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ABSTRACT 

Computer Vision continues to be an important topic of 

research. The CV research is extensively used in the 

Augmented Reality (AR) field. A common use-case of AR 

consists of displaying images or information about real-

world’s objects on a mobile phone’s screen as the camera 

moves around pointing to different objects. A common 

technique is to map the camera’s internal coordinates to the 

real world’s coordinates where the virtual images are 

projected, and these coordinates are tracked as the camera 

moves, to dynamically adjust the projection to match the 

environment (applying the corresponding rotate, scale and 

translate transformations). 

  

In this paper, I show how can an arbitrary image be projected 

onto a camera’s plane, and how to track the position of the 

projected image in the real-world coordinates as the camera 

rotates around its axis, using only well-known Computer 

Vision techniques and a Homography for the spatial 

transformations. The method shown in this paper does not 

require specially placed markers in the physical world or 

additional sensors such as GPS or an accelerometer. 

  

1 INTRODUCTION 

Computer Vision (CV) is a mature field of study. It has been 

around for several decades, however research is still very 

active. For example, the Canny Edge Detector [1] was 

introduced in 1986, and a paper [2] that studies the 

applicability of Canny to high-resolution video-streams using 

modern software platforms such as Hadoop, has been 

published this year. 

  

In this paper, a method that uses CV and other image 

processing techniques is developed to show a common AR 

use-case. Using open-source tools such as OpenCV and 

NumPy for the image processing, I write a program in Python 

that takes any pre-recorded video of an open room and 

projects an arbitrary image onto some carefully chosen 

coordinates in the real-world’s plane. It uses a Homography 

transformation and various feature matching techniques to 

perform the spatial transformations (rotate, scale and 

translate) that allows to project the image as it would appear 

in the real world as the camera moves around its axis. It also 

tracks the virtual image coordinates even when those 

coordinates are no longer within the camera’s field of view. 

  

This paper is organized as follows. Section 2 covers the 

hardware and software specifications of the machine where 

this program is developed. Section 3 makes a small 

introduction to feature selection and matching. Section 4 

proposes an algorithm to choose the virtual image 

coordinates. Section 5 analyzes methods used to track the 

virtual image coordinates as the camera’s field of view 

changes. Section 6 discusses the program’s performance. 

Finally, Section 7 makes a brief comparison against state-of-

the-art Augmented Reality. 

 

 

2 SYSTEM SPECS 

The machine and software used is: 

- Software: Virtual Box (v5.2.12) Ubuntu (v18.04) VM, 

Python (v2.7.13), OpenCV (v2.4.13) and NumPy (v1.15.1). 

Docker (v18.06) container. 

- Hardware: 8GB RAM, 2 vCPU (Intel® Core™ i7-6600U 

CPU @ 2.60GHz). 

- Camera: Samsung Galaxy A7, 16 MP, f/1.9, 27mm (wide), 

AF. Recording at VGA (640x480) and HD (1280x720) 

3 MECHANISM TO FIND FEATURES 

A feature (a.k.a corner) is a pixel for which significant change 

in intensity (or brightness) is observed in both dimensions. 

Finding good features is one of the most important steps for 

this program as the features serve two key purposes:  

1. Help identify an area to project the image 

2. Matching pixels from one frame to another 

The Computer Vision community offers a variety of methods 

which can be used to find features on an image. In [3], several 

methods are discussed, each with its own set of cons/pros. For 

this paper, the method must be invariant to both scale and 

rotation as the scenes used are subject to those transforms. All 

features discussed in [3] meet this requirement, however 

some perform better than others. Oriented FAST and Rotated 

BRIEF (ORB) [4] is not the most scale or rotation invariant 

algorithm, however (a) it does perform well on those 

transformations and (b) is “the most efficient feature-

detector-descriptor with least computational cost” [3]. This 

paper is developed on a VM that offers strong but virtualized 

processing power, hence, the method with the least 

computational cost is desired. For reasons given in (a) and 

(b), ORB has been selected for feature finding. 

4 HOW TO DECIDE WHERE TO PROJECT 

In a real-world application, the location in the physical plane 

where the Augmented Reality image is to be projected would 

be chosen by human-interaction or some algorithm. For this 

paper, the latter has been chosen. An algorithm that 

automatically chooses a location from the recorded frames is 

developed. The algorithm tries to find a suitable space to 

project the image based on the features extracted from the 

recorded frames. Let us define “good space” as a rectangular 

area that fits inside a group of features (a.k.a corners).  

 

 

Figure 1. A good space is within a group of features. 

A feature is used as a delimiter because objects found in a 

scene will typically have a feature associated. A feature-less 

region of the scene is an indication of a, possibly, planar and 

free of objects space where an image can be projected. 



However, if only features (corners) and not edges were to be 

considered, areas that cross edge boundaries might be 

selected, as seen in Figure 2.  

 

Figure 2. Area is selected over an undetected edge. 

A “good space” is then redefined as a rectangular area that 

fits inside a group of features and edges. Edges are found 

using the Canny [1] method. The resulting selected area is 

now in a space where no edges or corners exist. 

 

Figure 3. A space that considers edges and corners. 

Selecting a good space 

The algorithm is designed to avoid selecting the scene corners 

(physical corners in image). For this purpose, a circular 

window is slided across the scene. The circle’s perimeter is 

always within the image perimeter, i.e. the sliding circle starts 

and ends at the image edges. This causes the pixels at each 

image corner to be ignored. In Figure 4, the image corners 

are the yellowish pixels. 

 

 

Figure 4. Sliding circle ignores corners. 

Only pixels inside the circle’s perimeter (blue pixels in 

Figure 4) are considered. The algorithm is looking for the 

pixel that is furthest away from any corner or edge that is also 

found inside the circle. An Euclidean distance-transform 

function is used for this purpose. This function calculates the 

distance to the closest zero-pixel for all non-zero pixels. A 

simple method is used: 

1. Initialize a binary mask with all 0s 

2. Every pixel inside the circle is set to 1 

3. Every feature or edge pixel is set to 0 

4. Apply the distance transform to the mask 

 

Figure 5. Binary mask. Features and edges are zero-pixels. 

After applying the transform to the binary mask, every non-

zero pixel has its distance calculated to the nearest feature. 

The pixel with the maximum value is the most distant to all 

features contained within that region. This is represented as 

the brightest pixel in Figure 6. 

 

Figure 6. Distance transform function applied to the mask. 

The circle’s radius also controls the maximum size of the 

space that can be found, as the maximun possible distance 

from the circle’s center to a zero-pixel is the circle’s 

perimeter. The algorithm used to find the best space for the 

projection is: 

Initialization 

1. Find edges and features 

2. Set circle position = radius, radius 

3. Set max distance = 0 

4. Set selected point = circle position 

While circle inside image 

1. Create binary mask 

2. Apply distance transform 

3. Update max distance and selected point 

4. Slide circle (with a fixed step) 

At the end of the loop, the area where the image is to be 

projected is represented as the rectangle that fits inside a 

circle with its center equals to the selected point and radius 

equal to the max distance. The rectangle’s base and height 

are calculated using a fixed ratio which works well for the 

projected image. Figure 7 shows this graphically. The 

colored bounding box is the current best space, the ghostly 

circle is the distance transform, the inner circle has radius 

equal to the distance from the brightest pixel to the closest 

feature/edge. The bounding box inside that circle is a 

potential space. 



 

Figure 7. Sliding circle with distance transform. 

5 TRACKING THE IMAGE 

5.1 Objective  

The projected image must remain in a fixed position in real-

world coordinates as the camera moves. A few approaches 

were taken before finding one that works well. A description 

is given for each. 

5.2 Image origin coordinates 

The “image origin coordinates” are the image coordinates 

when placing its (0, 0) pixel at the origin of our coordinate 

system. This term is used in the rest of the paper. The 

coordinates are: (0, 0), (0, 𝑤𝑖𝑑𝑡ℎ), (ℎ𝑒𝑖𝑔ℎ𝑡, 0), (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) 

5.3 Feature matching 

In order to compute the Homography between two frames, a 

list of corresponding features must be found in both frames 

(matching features). The ORB [4] detector is used to find 

features on each frame, separately. For each feature, a scale 

and rotation invariant descriptor is computed. One method to 

match features is the Brute Force matcher from OpenCV. It 

returns the list of corresponding features that it determined to 

be present in both frames as well as an error metric (a.k.a 

distance) assigned to each one. The matches with the lowest 

distance are the most accurate ones. Matching features are 

sorted by distance (ascending) and then the first N features 

are used. The number of features (N) is not fixed and can be 

estimated by experimentation. N=50 produced the best results 

for the scenes used in this paper. This method was tested in 

sections §5.5, §5.6 and §5.8. 

5.4 Computing the Homography 

A list of matching features is passed to the OpenCV 

findHomography function. The function supports several 

methods. A method is considered robust if it can exclude 

outliers from the sample. RANSAC [5] is an example of a 

robust method. This is the method used on this paper. 

5.5 First approach: naïve warp 

The first approach uses a naïve technique in which the image 

is inserted into the first frame, and then warps the entire first 

frame over the subsequent frames. The image is projected in 

the correct space (along with the rest of the first frame). 

Initialization: 

1. Insert the image image into frame 0 

2. Find and remember features from frame 0 

Enter loop: For each frame, start t=1 

3. Find features in frame t 

4. Match features between frame t and 0 

5. Compute the Homography 

6. Warp the frame 0 into frame t 

Results: 

Since the entire first frame is continuously warped from 

frame to frame, and the lighting between frames is not the 

same, the warped portion of the frame shows the brightness 

difference between the first and subsequent frames. This 

manifests in Figure 8 as a shadow-like plane. 

 

Figure 8. Unwanted shadow due to brightness delta 

between first and subsequent frames. 

5.6 Second approach: forward warping 

Consists in keeping track of the image coordinates. By 

keeping track of where the image would be in subsequent 

frames, it is possible to warp the image from the first frame 

to the current frame as follows. At frame t, the image 

coordinates 𝑨𝒕 are known. Find the Homography 𝑯𝒕
𝒕+𝟏 

between frames t and t+1, and use 𝑯𝒕
𝒕+𝟏 to forward warp 𝑨𝒕 

to 𝑨𝒕+𝟏. With the new image coordinates 𝑨𝒕+𝟏, it is possible 

to find the Homography 𝑯𝟎
𝒕+𝟏 between the image 𝑨𝟎 origin 

coordinates and 𝑨𝒕+𝟏. Finally, using 𝑯𝟎
𝒕+𝟏, warp the image 

onto the current frame. 

Initialization: 

1. Remember the image origin coordinates 𝑨𝟎 

Enter loop: For each frame 

1. Remember the image coordinates at time t: 𝑨𝒕 

2. Find matching features at frames t and t+1. 

3. Compute the Homography, 𝑯𝒕
𝒕+𝟏 

4. Forward warp the image coordinates 𝑨𝒕 with 𝑯𝒕
𝒕+𝟏. Gives 

new coordinates 𝑨𝒕+𝟏 

5. Compute the Homography, 𝑯𝟎
𝒕+𝟏, between the image 

origin coordinates 𝑨𝟎 and 𝑨𝒕+𝟏 

6. Project the image into the frame with 𝑯𝟎
𝒕+𝟏. 

Results: 

Worked well for the first few frames. However, the projected 

image quickly becomes significantly miss-aligned. With 

forward warping it is expected that the estimated location of 

the coordinates is slightly wrong, as the projected pixel may 

land in between pixels in the destination image. This 

manifests in Figure 9 as a progressive miss-alignment of the 

projected image. 

 

Figure 9. Forward warping progressively deforms the 

projected image. 

5.7 Third approach: optical flow 

The approach is similar to the Second approach, but instead 

of estimating the image coordinates with forward-warping, 



Optical Flow with the Lukas-Kanade Pyramidal method is 

used. The coordinates at time t+1 are estimated as the 

coordinates at time t plus the average displacement of the 

found features. 

Initialization: 

1. Remember the image origin coordinates 𝑨𝟎 

Enter loop: For each new frame 

1. Remember the image coordinates at time t 𝑨𝒕 

2. Find features coordinates 𝑭𝒕 

3. Compute Optical Flow for 𝑭𝒕. This gives the features 

coordinates at time t+1: 𝑭𝒕+𝟏 

4. Calculate the displacement vector 𝑫𝒕 by subtracting the 

𝑭𝒕+𝟏 from 𝑭𝒕 

7. Calculate the average displacements from all features in 

𝑫𝒕 by taking the average on the X and Y dimensions: 𝑫𝒕 

8. Estimate the image location 𝑨𝒕+𝟏 by adding 𝑫𝒕 to 𝑨𝒕 

9. Compute the Homography 𝑯𝟎
𝒕+𝟏 between the image origin 

coordinates 𝑨𝟎 and 𝑨𝒕+𝟏 

10. Project the image into the frame with 𝑯𝟎
𝒕+𝟏 

Results: 

Worked well for horizontal and vertical camera movement. 

The projected image maintains its position as the camera 

moves, as seen in Figure 9. However, all coordinates must be 

moving in the same direction because the motion is estimated 

by taking average of the displacement vector. 

 

Figure 9. Image location at different frames. 

When the camera is rotating, some features move in opposite 

directions (e.g. top left corner features move to the right, 

while bottom right features move to the left). Because of this, 

when taking the average, some of the displacements would 

cancel each other. The projected image does not rotate 

properly as seen in Figure 10. 

 

Figure 10. Image location at different frames after rotating 

camera. Projected image does not rotate. 

5.8 Fourth approach: continuous Homography update 

The method described in [6] is a marker-less tracking system 

that works on scenes that contain one or more planes. It tracks 

camera pose by calculating the Homography between 

consecutive frames. While no camera calibration is done on 

this paper, an important insight is extracted from the 

equation 3.3 in [6].  

𝐻0
𝑖 =  𝐻𝑖−1

𝑖  𝐻𝑖−2
𝑖−1 … 𝐻0

1 

Equation 1. Homography from the first to the the ith frame 

In Equation 1, 𝐇𝟎
𝒊  is the Homography between an initial 

frame 0 and a subsequent frame i. In sections §5.6 and §5.7, 

effort is put into tracking the image coordinates as they move 

in order to estimate 𝐇𝟎
𝒊 . Equation 1 shows that this 

Homography can be calculated sequentially as frames are 

processed, without the need to track the image coordinates. 

This approach consists in sequentially calculating 𝐇𝟎
𝒊  by 

finding the Homography, 𝑯𝒕−𝟏
𝒕 , between consecutive frames 

and updating 𝐇𝟎
𝒊  as per Equation 1. The image is projected 

onto the every frame with 𝐇𝟎
𝒊 . 

Initialization: 

1. Compute the Homography, H, between the image origin 

coordinates and the space where the image is to be initially 

projected. 

2. Set 𝑯𝟎
𝒕 = H, where 𝑯𝟎

𝒕  is 𝑯𝟎
𝒊  in Equation 1. 

Enter loop: For every frame, start t=1, 

1. Project the image onto frame t-1 using 𝑯𝟎
𝒕  

2. Find matching features at frames t and t-1. 

3. Compute the Homography 𝑯𝒕−𝟏
𝒕  

4. Update 𝑯𝟎
𝒕  per Equation 1, 𝑯𝟎

𝒕 =  𝑯𝒕−𝟏
𝒕 𝑯𝟎

𝒕  

Results: 

The projected image follows the camera as it moves, 

including rotation. This solves the rotation problem found in 

section §5.7. See Figure 11. 

 

Figure 11. Rotation at different degrees 

However, 𝑯𝟎
𝒕  accumulates drift after each frame, causing the 

projected image to get miss-aligned after a while, as seen in 

Figure 12. 

 

Figure 12. Incorrect alignment due to accumulated drift 

One reason why 𝑯𝟎
𝒕  accumulates drift is that the frame-to-

frame Homography 𝑯𝒕−𝟏
𝒕  is not accurate. 𝑯𝒕−𝟏

𝒕  is computed 

by giving the best N features that were matched between 

frame t and t-1, as described in §5.3. This limits the  number 

of features that are used for the Homography. In general, 

more features produce more accurate results. An attempt was 

made by increasing the number of matched features, from 

N=50 to larger numbers, but the results did not improve. One 

reason why this can happen is that the features itself aren’t 

accurate enough. Graph 1 shows the relation between the 

error calculated for the feature (a.k.a distance) and the feature 

number (after sorting ascending by distance to extract the first 

N matches). N=300, and the data is averaged over 250 



samples. It can be observed that the error increases almost-

linearly as more ORB features are matched. 

 

Graph 1. Error per match number with ORB and BFMatcher 

As per [7], several methods exist for feature matching 1. 

Descriptor matching, that allows for large displacements but 

have limited accuracy and 2. Energy minimization, that 

provides accurate results but fail as displacements get too 

large (e.g. Dense Optical Flow). The method used on this 

approach is a descriptor based one. A method that provides 

higher accuracy is explored in section §5.9. 

5.9 Fifth approach: Fourth approach with optical flow 

In [10], Optical Flow is used for feature matching when a 

number of good matches is known. This idea is explored here. 

Let us use the same algorithm as section §5.8, except 

replacing ORB descriptor matching with Optical Flow. 

OpenCV’s calcOpticalFlowPyrLK function is provided 

with the list of features at frame t-1, and it returns the list of 

corresponding matching points if the Optical Flow was found 

in frame t. This list of corresponding points is used to 

compute 𝑯𝒕−𝟏
𝒕 . ORB is still used on each frame to detect the 

set of features (at frame t-1), and Optical Flow provides the 

matches at t. 

Same algorithm in section §5.8 except step 2 is redefined: 

2.1 Find ORB features at frame t-1: 𝑭𝒕−𝟏 

2.2 Compute Optical Flow for 𝑭𝒕−𝟏using frame t-1 and frame 

t, this gives 𝑭𝒕 

2.3 Discard any feature in 𝑭𝒕−𝟏 for which the Optical Flow 

was not found in frame t 

2.4 The matching features are 𝑭𝒕−𝟏, 𝑭𝒕 

Results: 

430 matching features were obtained in average using this 

technique (ORB set to 500 max). Only very accurate results 

are expected from the Optical Flow; hence a large number of 

good features are used to compute 𝑯𝒕−𝟏
𝒕 . The 𝑯𝟎

𝒕  

accumulating drift problem observed in §5.8 is resolved by 

this. The image is properly projected onto every frame t 

with 𝑯𝟎
𝒕 . It can handle rotation and scale variance as well. 

Figure 13 compares the results in §5.8 where the 

accumulating drift problem was observed (right) to the results 

in this section (left). 

 
Figure 13. Optical Flow vs Descriptor Matching 

This is the final implementation that was selected for this 

paper. A demostration video can be seen in [11] along with 

other results in [12] through [19]. 

6 PERFORMANCE ANALYSIS 

This program was developed using virtualized hardware and 

using Python as its programming language. The program 

currently reads the entire video recording from disk into 

memory and then writes the processed images back to disk. 

With these limitations, the Frames per second (FPS) achieved 

when processing an HD (1280x720) and VGA (640x480) 

input video is: 

• 20 FPS at HD 

• 40 FPS at VGA 

 

The disk I/O operations consumed ~20% of the processing 

time. If in-memory processing only (a live video feed) is used 

in the same environment, at most a 20% performance increase 

is expected. 

 

Optical Flow and ORB, responsible for feature matching, 

together consumed over 30% CPU time. The Optical Flow 

configuration parameters have been tuned to produce good 

results without consuming excessive CPU. Further tuning 

these values produced unwanted behavior. Another way to 

reduce Optical Flow processing time is to pass it less features. 

Since there is no extreme scale variance in the scenes 

presented on this paper, ORB can be optimized by changing 

its scale factor and number of pyramid levels. The scale factor 

defines the rate at which each next level is reduced. It has 

been found that by setting the scale factor to 2 (i.e., each next 

level has 4x less pixels than the previous) and reducing the 

number of levels to 4 (from 8), there was a 4 FPS 

improvement. 

 

7 STATE OF ART COMPARISON 

AR has become “commonly available to the general public, 

due to technological advances in mobile computing and 

sensor integration” [9]. Two potential areas of improvement 

for this paper are mentioned on this simple statement: Sensor 

Integration and Mobile Computing. 

 

While no testing has been done on a mobile device, it is 

expected that this code as-is will perform poorly, given the 

high demand of resources required (See section §2), and that 

lower processing power is typically found on mobile devices. 

In [10], a marker-less AR system is capable of achieving near 

30 FPS on a mobile device. Additionally in the mobile world, 

state of the art AR incorporates “sensor fusion techniques, 

such as using GPS or IMU” , “IMU sensor based tracking 

uses magnetometer, gyroscope, and accelerometer” [8], 

especially in smartphones that “contain an increasingly 

sophisticated array of sensors”, “enabling AR to become 

more personally meaningful and situated” [9]. These kinds of 

sensors were available for this paper as part of the recording 

device used, but this was left out of scope. “A complete AR 

system should include three main elements, i.e., tracking, 

registration, and visualization” where tracking is defined as 

“dynamic sensing and measuring of the spatial properties”, 

one way this is accomplished is “vision-based tracking [that] 

uses image processing to calculate the camera pose” [8]. The 

tracking problem as described above has not been solved for 

this paper. The algorithm does not attempt to calculate 
camera pose. It depends on the camera rotating around its 

own axis in order to properly compute the Homography. A 

demo video of this code applied to a camera not moving 

around its own axis is provided in Demo [14].  



 

Other areas on which the state of the art is ahead, include but 

are not limited to real world plane detection, projection of 3D 

objects and, user input and control (e.g. changing the image 

size or position). 

 

8 LIMITATIONS 

The following are some known limitations: 

 

- Does not detect real planes in physical world. For good 

results, the camera must be facing towards a physical plane 

like a wall or floor. See [12] for an example of how things go 

wrong when not facing a physical plane. 

- No camera calibration. The camera must rotate around its 

own axis. See [14] for an example of a camera not rotating 

against its own axis. 

- Optical Flow is sensible to large pixel displacements and/or 

sudden brightness changes. See [13] for an example of a fast-

moving camera. 

9 CONCLUSIONS 

Using only open-source tools, a Homography for the spatial 

transformations and a couple of well-known Computer 

Vision (CV) techniques, the basic Augmented Reality (AR) 

use-case of displaying additional information on top of the 

real-world objects, has been implemented and discussed in 

this paper using input from fairly recent CV publications. 

The Homography transformation that is used to transform the 

virtual image from its origin coordinates to any arbitrary 

camera’s coordinates is updated after processing each 

subsequent camera frame using the method described in [6]. 

The basic intuition is that only the origin and final coordinates 

are needed to make the spatial transformations (rotate, scale, 

translate) that project the virtual image to the real-world’s 

coordinates as the camera’s field of view changes. The well-

known CV technique known as “Optical Flow” discussed in 

[10] is used for the feature-matching between frames. 

  

Even though Computer Vision is decades-old research, the 

main contributions used in this paper came from papers 

written fairly recently, e.g. [10] from 2013, [3] from 2018, 

and [7] from 2009. 

 

ACKNOWLEDGEMENTS 

Special thanks to Jorge Sauma (Hewlett Packard Enterprise) 

for reviewing this paper and providing invaluable feedback. 

 

REFERENCES 

[1] John Canny (1986). A Computational Approach to Edge 

Detection. IEEE Transactions On Pattern Analysis And 

Machine Intelligence. 

 

[2] Iqbal, B., Iqbal, W., Khan, N. et al. Canny edge 

detection and Hough transform for high resolution video 

streams using Hadoop and Spark. Cluster Comput 23, 397–

408 (2020). https://doi.org/10.1007/s10586-019-02929-x 

[3] Shaharyar Ahmed, K. T. (2018). A comparative analysis 

of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. 

International Conference on Computing, Mathematics and 

Engineering Technologies (iCoMET). 

[4] Rublee, Ethan & Rabaud, Vincent & Konolige, Kurt & 

Bradski, Gary. (2011). ORB: an efficient alternative to SIFT 

or SURF. Proceedings of the IEEE International Conference 

on Computer Vision.  

[5] Martin A. Fischler & Robert C. Bolles (June 1981). 

"Random Sample Consensus: A Paradigm for Model Fitting 

with Applications to Image Analysis and Automated 

Cartography 

[6] Gilles Simon, A. W. (2000). Markerless Tracking using 

Planar Structures in the Scene. Proceedings IEEE and ACM 

International Symposium on Augmented Reality. 

[7] Thomas Brox, C. B. (2009). Large Displacement Optical 

Flow. Proc. IEEE International Conference on Computer 

Vision and Pattern Recognition (CVPR). 

[8] Wenkai Li, A. Y. (2017). A State-of-the-Art Review of 

Augmented Reality in Engineering Analysis and Simulation. 

Multimodal Technologies and Interaction. 

 

[9] Elizabeth FitzGerald, A. A. (2012). Augmented reality 

and mobile learning: the state of the art. 11th World 

Conference on Mobile and Contextual Learning. 

 

[10] Ufkes, A., & Fiala, M. (2013). A markerless augmented 

reality system for mobile devices. Proceedings of the 

International Conference on Computer and Robot Vision. 

 

DEMOS 

[11] Full demo 

dropbox.com/s/6wn56v9ydrkwcwc/final.mp4 

[12] Known limitation 1 

dropbox.com/s/ha532n4v0d0ydqg/plane.avi 

[13] Known limitation 2 

dropbox.com/s/0d4znh7nzpxj58l/fast.avi 

[14] Known limitation 3 

dropbox.com/s/c0q1lgsh6ktmjj7/axis.avi 

[15] Sliding circle 
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[16] Bedroom scene 

dropbox.com/s/n3xhnye69k7n1px/bed.avi 

[17] Ceiling scene 

dropbox.com/s/90lkc89lfb5chgc/ceiling.avi 

[18] Living room scene 

dropbox.com/s/dpmtd4rummqcibj/living.avi 

[19] Airport office scene 

dropbox.com/s/nqb21oghze4jorv/office.avi 

 

 


