
Poker Hand Dataset: A Machine Learning Analysis and a Practical Linear Transformation
Walinton Cambronero

College of Computing, Georgia Institute of Technology

wcambronero3 {at} gatech.edu

ABSTRACT

The Poker Hand dataset [1] has two properties that makes it

particular challenging for classification algorithms: it contains

only categorical features (suite and rank of a card) and it’s

extremely imbalanced (2 out of 10 classes constitute 90% of the

samples). This makes it an interesting dataset for studying and

evaluating various of the well-known Machine Learning (ML)

classification algorithms. As part of Georgia Tech’s Machine

Learning CS 76141 class, some of these algorithms are

evaluated against this dataset. This paper describes the

methodology used to create classifiers than can classify a 5-

cards poker hand entirely based in Machine Learning as

opposed to classical rule-based programming. The results

obtained for each of the following algorithms are discussed in

detail: Multi-layer Perceptron Neural Network, Support Vector

Machines, Decision Trees and K-Nearest Neighbors.

Additionally, a simple linear transformation for the dataset is

proposed, which significantly improves the performance of the

classifiers.

1 INTRODUCTION

Machine Learning classifier algorithms struggle with

categorical features because typical distance (a.k.a. similarity)

metrics can’t be naturally calculated for such features.

Categorial features need first to be encoded in a real-valued

format before distance metrics can be even calculated, but even

with real-valued numbers, typical metrics such as the Euclidean

distance may not make sense for such features. E.g., if we have

“card suite” encoded in real-valued numbers, what does the

Euclidean distance of hearts to spades mean? This problem has

been studied for a while. Several authors such as Boriah et.al.

[2] have developed comparative models to evaluate the

performance of some of the proposed methods. Another kind of

challenging datasets for classification algorithms are those that

are imbalanced, i.e. there is disproportionate ratio of samples of

each class. “Imbalanced classifications pose a challenge for

predictive modeling as most of the machine learning algorithms

used for classification were designed around the assumption of

an equal number of examples for each class”2. The Poker-hand

dataset [1] has both properties: it’s extremely imbalanced and

its features are categorical. A detailed description of the dataset

is provided in the next section. This particular dataset is

described by the authors as “challenging dataset for

classification algorithms”3.

1 https://www.cc.gatech.edu/~isbell/classes/2009/cs7641_spring/

2 https://machinelearningmastery.com/what-is-imbalanced-classification/

3 https://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand.names

4 Model Complexity refers to the number of terms (variables) needed in a particular model
5 https://numpy.org/

6 https://scikit-learn.org/

7 https://colab.research.google.com/

This paper is written for the Machine Learning class CS 7614,

from the Master of Computer Science program at Georgia

Tech’s Computing Systems School. The goal of the paper is not

to solve the problems faced by the classifier algorithms when

dealing with this kind of datasets, but to provide a

comprehensive analysis of the results achieved with various

popular classifiers, the methodology used to reach such results

and the challenges faced along the way.

The classifiers covered are: Multi-layer Perceptron Neural

Network (MLP), Decision Trees (DT), K-Nearest Neighbors

(KNN) and Support Vector Machines (SVM). For each

classifier, I first show how is the data pre-processed and the

methodology followed to pick the algorithm’s hyper-

parameters. Additional considerations on a per-algorithm basis

are discussed along with a Model Complexity4 analysis.

Finally, the results obtained are analyzed using various visual

and tabular reports. The reader is assumed to be comfortable

with the basic Machine Learning theory and to have a good

understanding of the algorithms under study. The paper does

not attempt to elaborate on these topics, instead, it focuses in

the analysis of the obtained results from such algorithms.

In addition, a novel linear transformation is proposed for the

dataset. The transformation makes the dataset more suitable for

processing by the different Machine Learning algorithms. The

results achieved by the classifiers when using both the

transformed and original data are discussed in the paper.

Python is used as the programming language, Numpy5 is used

for data processing and Scikit-learn6 is the Machine Learning

library of choice. Calculations are run in both a PC without

GPU support, and in Google’s Colab7 with GPU support.

2 DATASET DESCRIPTION

The dataset is divided in training and testing sets. There are 1M

and 25K samples in each set, respectively. This is a 11-

dimensional dataset: 10 attributes and 1 label (a.k.a. class or

feature). All attributes are categorical. There are no missing

values. Each sample represents a 5-cards poker-hand. Each card

has two attributes (a.k.a. features): suite and rank.

Encoding

Suite: 1: Hearts, 2: Spades, 3: Diamonds, 4: Clubs

Rank: 1: Ace, 2:2, ..., 10: Ten, 11: Jack, 12: Queen, 13: King

Label: 0: Nothing, 1: Pair, 2: Two pairs, 3: Three of a kind, 4:

Straight, 5: Flush, 6: Full house, 7: Four of a kind 8: Straight

Flush 9: Royal Flush

https://www.cc.gatech.edu/~isbell/classes/2009/cs7641_spring/
https://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand.names
https://numpy.org/
https://scikit-learn.org/
https://colab.research.google.com/

Class Distribution

The dataset is very imbalanced. There are two dominant

classes: 0 (Nothing in hand) and 1 (One pair). This distribution

isn't random. It follows the actual distribution in the true game

domain. The dominant classes account for over 90% of the

samples. Table 1 shows the class distribution.

Table 1

0: Nothing in hand: 49.95202%

1: One pair, 42.37905%

2: Two pairs, 4.82207%

3: Three of a kind, 2.05118%

4: Straight, 0.37185%

5: Flush, 54 instances, 0.21591%

6: Full house, 36 instances, 0.14394%

7: Four of a kind, 0.02399%

8: Straight flush, 0.01999%

9: Royal flush, 0.01999%

Credit: https://archive.ics.uci.edu/ml/datasets/Poker+Hand

3 HOW ARE THE RESULTS MEASURED

Classification Reports8 are generally used in Machine

Learning to measure the performance of classification

algorithms. A Classification Report analyzes correct vs

incorrect predictions and produces a series of metrics. From

these metrics, the macro F1 score provides unweighted results

per class, i.e. it does not take imbalance into account. “In

problems where infrequent classes are nonetheless important,

macro-averaging may be a means of highlighting their

performance”9. This prevents the good results obtained in

dominant classes -alone- to be treated as a good result overall.

E.g., for a classifier that correctly classifies 100% the 2

dominant classes but incorrectly classifies 100% of the other

classes, a weighted metric would find that 90% of the results

were correct, given that the 2 dominant classes represent 90%

of the data, but clearly an algorithm that miss-classifies 8 out of

10 poker hands is a bad one In addition to the macro F1 score,

a Confusion Matrix10 is used to visualize analyze the results of

the classifiers. The results of this paper are discussed in function

of both the macro F1-score and the Confusion Matrix. Where

appropriate, classifier Training Time is also measured.

4 TRAINING, VALIDATION AND TESTING SETS

The classifiers don’t have access to the testing-set during

learning. The testing-set is exclusively used for post-learning

evaluation of a classifier. During learning, some algorithms

require a validation dataset to tune hyper-parameters (e.g. for

Cross-Validation) or as input to a model fitness function. The

validation-set is also used for Model Complexity analysis. For

this purpose, the training-set is split into training and

validation (80/20). Before the split, the data is shuffled and

8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

9 https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics

10 https://en.wikipedia.org/wiki/Confusion_matrix

11 http://deeplearning.net/tutorial/mlp.html
12 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use

13 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

14 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use

stratified. Stratification is made as a function of the label, to

make sure that both sets proportionally receive labels from all

classes.

5 MULTI-LAYER PERCEPTRON NEURAL NETWORK

The first algorithm to evaluate is a as Multi-layer perceptron11

(MLP). MLP is a type of feedforward Artificial Neural

Networks (ANN). The choice of initial configuration and other

hyper-parameters, as well as the results obtained after further

tuning these values is described in this section.

Data pre-processing

Per SciKit-learn documentation, “Multi-layer Perceptron is

sensitive to feature scaling, so it is highly recommended to scale

your data”12. The data is scaled with Scikit-learn’s

StandardScalar13 using the recommended range [0, 1].

Initial hyper-parameters

Mitchell suggests [3] that a network of 3 layers (1 output and 2

hidden layers) can be used to model any arbitrary function. And

according to Heaton [4], a rule of thumb to choose the number

of neurons per hidden-layer is to pick a value in that is “between

the size of the input layer and the size of the output layer” [4].

The input layer for this dataset has 10 features and the output is

the 10 possible classes (poker hands). Scikit-learn’s

documentation mentions that “for relatively large

datasets, Adam [solver] is very robust”14. Following these

recommendations, a network of 2 hidden layers of 10

neurons each is used with the Adam solver. ReLU as the

activation function. The other hyper parameters are Scikit-

learn’s defaults. The classification report for these results are

shown in Table 2. Most classes were not classified at all (as

noticed in the 0.00 recall values). During training, the 200 max-

iterations limits was hit on every epoch, this means the

algorithm wasn’t learning. The results are clearly disappointing.

Table 2

Classification Report for initial hyper-parameters
 precision recall f1-score support

 Nothing 0.61 0.77 0.68 501209

 Pair 0.55 0.48 0.51 422498

 Two pairs 0.00 0.00 0.00 47622

Three of a kind 0.30 0.00 0.00 21121

 Straight 0.00 0.00 0.00 3885

 Flush 0.00 0.00 0.00 1996

 Full house 0.00 0.00 0.00 1424

 Four of a kind 0.00 0.00 0.00 230

 Straight flush 0.00 0.00 0.00 12

 Royal flush 0.00 0.00 0.00 3

 accuracy 0.59 1000000

 macro avg 0.15 0.12 0.12 1000000

 weighted avg 0.54 0.59 0.56 1000000

Figure 1 compares the accuracy obtained for each class as a

function of the number of samples of that class (a.k.a. “support”

https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
https://en.wikipedia.org/wiki/Confusion_matrix
http://deeplearning.net/tutorial/mlp.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use

in the Classification Report). The graph shows that the classifier

is biased towards the dominant classes. Only the most-dominant

class is correctly classified better than chance.

Figure 1

The Confusion Matrix is shown in Figure 2. It shows that the

least dominant-classes are completely miss-classified as one of

the dominant-classes. The dominant classes are 0 and 1. It can

be observed in the Confusion Matrix that all predictions

(squares with color) ended up in either the 0 or 1 column.

Figure 2

Model complexity analysis

The F1-score is analyzed after running the classifier with

various settings of topology (number of hidden layers and

neurons), alpha (regularization parameter) and learning rate.

Varying the topology can show how a more or less complex

network can better represent the function, and alpha helps

“avoiding overfitting by penalizing weights with large

magnitudes”15. The analysis is done exclusively against the

training data, which is split 80/20 as train-validation. The values

analyzed for topology are one layer with 100 neurons, 2 layers

with 10 neurons, 2 layers with 100 neurons and 3 layers with

100 neurons. The values analyzed for alpha is in the range

recommended in Scikit-learn’s documentation [1e-1, 1e-6]. A

properly tuned learning rate can help the model converge. The

results are shown in Figure 3. The results suggest that tuning

hyper-parameters in isolation is not going to help, e.g.

arbitrarily choosing network topologies without proper tuning

of other parameters isn’t improving the results. The two most

complex networks resulted in the highest level of overfit.

Overfit is observed when the results over the training-set (blue)

15 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#regularization

are much better than their testing-set (green) counterpart. The

third most complex (10, 10) was largely defeated by the

simplest one (100). The results also suggest that for small

values of alpha, the score remains stable, but these parameters

should be validated in conjunction with other hyper-parameters.

Figure 3

Model analysis and comparison with grid-search

Manually choosing the params from the previous section that

provided the best results, did not significantly improve the

performance. E.g. with 2-layer topology (100, 100), alpha =

1e-4 and learning rate = 1e-3, resulted in a 25% F1 score (vs

12% from previous exercise). In an effort to study how the

results change when multiple hyper-parameters are tested in

conjunction, a grid search was started with a wider range of

values including tolerance and maximum iterations. The grid

came back with the following hyper-parameters and an

impressive 80% F1 score: 3 hidden layers of 100 neurons each,

alpha=0.0001 and learning rate=0.01 with 100 max-iterations.

The result of this experiment was reproduced multiple times to

validate its consistency. The Confusion Matrix is shown in

Figure 4.

Figure 4

This more complex network when tuned along other parameters

provided a remarkable increase in performance. In this

particular example, class 9 was completely miss-classified. The

reason is that class 9 (royal flush) has only 5 training samples

out of 25K total in the dataset, and the generalization that the

algorithm could achieve is not enough to correctly classify that

label. Notice that, while proportionally speaking, the vast

majority of samples were classified correctly (there is over a

million samples in the testing set), and only a few, from the non-

dominant classes were miss-classified, yet the macro F1-score

is still reporting only 80% success. This confirms that the F1-

score is an appropriate metric for this dataset.

Data transformation for a simpler network topology

The results obtained in the previous section aren’t great.

Theoretically these results can be improved as a neural network

is capable of modeling any arbitrary function, but this might

require a more complex model. This section proposes a linear

transformation to the dataset that provides better results even

for the simpler topologies that previously resulted in bad

predictions. The transformation is based in the fact that the

order in which the cards appear (in a hand) doesn’t matter (to

classify the hand), and that a more important attribute for

classifying a hand is the number of cards (i.e. cardinality) with

the same rank or suite that appear in the hand. The original

dataset model gives an artificial importance to the order in

which the cards appear (samples are ordered lists of 5 cards)

and it does not explicitly encode the cardinality of each suite or

rank. The premise is that by making this attribute explicitly

available in the data, a Neural Network is able to better classify

the dataset, in comparison to the same Neural Network when

using the original model in which the attribute is hidden. To

validate this premise, the neural-network model that provided

bad results when using the original dataset is trained again with

the new dataset. The results are discussed in this section.

Linear transformation

The following is a linear transformation from the original 11D

space to a new 18D space. A linear transformation is preferable

due to its reduced computational requirements. The new

dimensions and descriptions are:

Attributes 1 through 13: The 13 ranks, i.e. 1: Ace, 2: Two, 3:

Three, …, 10: Ten, 11: Jack, 12: Queen, 13: King.

Attributes 14 through 17: The 4 suites, i.e. 14: Hearts, 15:

Spades, 16: Diamonds, 17: Clubs

Domain: [0-5]. Each dimension represents the rank or suite

cardinality in the hand.

Last dimension: Poker hand [0-9] (unchanged).

Example transformation for the Royal Flush of Hearts

Representation in original dimensions (11D)

Data: 1,1,1,10,1,11,1,12,1,13,9

Encodes: Hearts-Ace, Hearts-Ten, Hearts-Jack, Hearts-Queen,

Hearts-King, Royal-Flush

Representation in new dimensions (18D)

Data: 1,0,0,0,0,0,0,0,0,1,1,1,1,5,0,0,0,9

Encodes: 1st column = 1 ace, 10th through 13th columns =

10, Jack, Queen and King, 14th column = 5 cards are hearts,

and 18th column a Royal Flush.

Figure 5 shows a visual representation of the transformation for

the Royal Flush of Hearts.

Figure 5

The new model represents any given a combination of 5 cards

the same way regardless of order and explicitly exposes

information useful for Poker hands such as the cardinality of

each rank and suite.

Results with the transformed data

A new grid search was started but limiting the topology to the

two that previously provided very poor results (under 15%

macro-avg F1 score). The result was that a network of a single

layer with 100 neurons resulted in 72% macro-avg F1 score,

i.e., a simple data transformation allowed for a significant

performance increase using a less complex neural network.

Figure 5 shows the Confusion Matrix. Notice that even the least

dominant class (class 9) was correctly classified 100% of the

time.

Figure 6

A 2-layer (100 neurons each) MLP results in ~86 accuracy

(macro-avg F1 score). Figure 7 shows the Confusion Matrix.

Figure 7

The result shown in Figure 7 using 2-layers is equivalent or

better than the result achieved a 3-layers MLP with the original

data (refer to previous section). In terms of training-time, the

transformed dataset completes training in only 13 seconds

while it takes 20+ seconds for the original data, an improvement

of ~40% in training-time.

This is an example of a method in which, a highly imbalanced

and purely categorical dataset can be still successfully

processed by a classification algorithm. This method is of my

own invention and applicable only to this dataset. As opposed

to using a similarity metric that is applicable to categorial

features, this method transforms the data in a way that it

becomes non-categorical. More general approaches and

similarity metrics are studied in [2].

General results

An MLP neural network with 3 hidden layers of 100 neurons

each, alpha=0.0001 and a learning rate=0.01, achieved a ~80%

F1-macro average score. This is a remarkable improvement

over the initial hyper-parameters that before proper tuning

yielded a 12% score. The testing set has over 1M samples of

which over 95% were classified correctly but given that the

metric in use (macro F1-score) does not give more weight to the

dominant classes, the overall score is significantly lower. This

proves that the F1 macro-average metric is appropriate for this

dataset.

In addition, it was observed that the original dataset model is

not the most appropriate for the classification task at hand. In

order to learn the underlying classification function, the neural

network needs to learn some hidden attributes. A linear

transformation over the dataset is proposed, which makes some
of these attributes explicitly available in the data. The end result

is a simpler model to learn and hence, a simpler neural network

is able to achieve comparable results to the more complex

network that uses the original dataset.

6 DECISION TREES

Pre-analysis of the dataset

In order to classify a Poker hand, a player needs all 5 cards

revealed. A single one card can totally re-classify a hand. E.g.

the first 4 cards can be classified as class nothing, but the fifth

card can make the hand become a flush, pair, straight and

others. This is a particular hard problem for a Decision Tree

(DT). There will be splits that miss-classifies a whole bunch of

hands. A probabilistic result seems to be more appropriate, e.g.

having 3 given cards reduces the domain of possible hand. On

decision-splits, I expect that the dominant classes will be

chosen more often simply because they get more votes.

Initial hyper-parameters analysis

SciKit’s DecisionTreeClassifier is used. The most interesting

default settings (in parenthesis) are: max_depth (no-limit),

min_samples_split (2), min_samples_leaf (1), class_weight

(uniform) and the split method (Gini). The DT is expected to

overfit if the max_depth is set to no-limit. On one hand, the DT

to should be able to generalize (e.g. smaller max_depth), but in

the other hand it must be able to go deep-enough to classify the

5-cards correctly. Given the number of samples for some of the

non-dominant classes (have 6 or fewer instances), the

min_samples_leaf and min_samples_split can’t be too strict,

otherwise there is no hope for the DT to learn those classes (e.g.

min_sample_leaf to be smaller than samples exist). The

class_weight should be set to take in account the imbalance

nature of this dataset. Otherwise, the non-dominant classes

won’t have a chance. A DT is definitely not a good classifier

for this particular dataset. The experiments below confirm this.

The following are the initial parameters chosen for this

classifier: max_depth: 10 (same as used the number of

attributes), class_weight balanced (class imbalance in dataset),

min_samples_leaf and min_samples_split: 3 (less than the

minimum number of samples for the least represented class).

Performance of initial parameters vs default settings

When the tree is trained using the default parameters and tested

against the training-set, it obtains a perfect F1-score (1.0). This

is due to overfitting. When tested against the testing-set, the

performance is dramatically decreased. Figure 8 and Figure 9

are the Confusion Matrices of the default and initial parameters,

respectively, against the testing-set.

Figure 8

Figure 8 shows the results using the default settings. It is

observed that the poker-hands are often miss-classified as one

of the dominant classes (0 & 1) as indicated by the strong color

in those columns. This is expected given that no class-balancing

is configured in this test.

Figure 9

Figure 9 shows that the tree isn’t longer biased towards the

dominant classes when using the initial parameters. In Table 3

it can be seen that recall percentage is spread across multiple

classes.
Table 3

 precision recall f1-score support

 0 0.60 0.28 0.39 501209

 1 0.50 0.08 0.15 422498

 2 0.08 0.14 0.10 47622

 3 0.03 0.26 0.06 21121

 4 0.01 0.29 0.01 3885

 5 0.01 0.55 0.02 1996

 6 0.00 0.13 0.00 1424

 7 0.00 0.01 0.00 230

 8 0.00 0.17 0.00 12

 9 0.00 0.00 0.00 3

 accuracy 0.19 1000000

 macro avg 0.12 0.19 0.07 1000000

weighted avg 0.52 0.19 0.26 1000000

Model complexity analysis

For the min_samples_leaf and min_samples_split, besides the

default values, a choice of 4 and 10 are made. These

corresponds to a number lower than the number of training

samples for the least represented class (5 samples) and a higher

one (10). For the max_depth, the default value is used (no-

limit) as well as a value that is lower and exactly the number of

attributes (5 and 10) and an arbitrary larger number (25). For

comparison, results for the default and the initially proposed

settings are also shown.

Figure 10

Figure 10 shows the F1-macro score for train vs validation sets

for the different models. As expected, the validation set score is

not good, since it is not expected that a decision tree classifier

can generalize well on this dataset. For the 3 cases of the default

values, the score against the training set is 100% (overfitting).

No performance increase is observed in neither configuration.

The validation set score decreases as the default settings are

changed. This indicates that the tree is unable to generalize for

the classes with fewest samples, and as the tree is less overfit it

can’t longer classify correctly the dominant classes either.

These account for the 90% of samples, hence reducing the

overall score. The last row (best) was added after seeing the

results from all previous settings

16 http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

Learning curve analysis

The learning curve analysis permits to observe how (and if) the

classifier improves its score, as more training samples are used

for learning. A good classifier would show that the cross-

validation score improves along with the training size as the

classifier is able to generalize better. The choice of parameters

for the test is hard, as there is no direct evidence of a better

result from the previous section. The default settings do have

the best result in terms of training and test validation, but they

also have a perfect F1 score against the training-set, which is an

indicator overfitting. For this reason, min_split=4 and

max_depth=25 (prevents overfitting) was chosen. The

training-set is split in 5 different subsets (train and validation

sets for cross-validation) with sizes of 10%, 32.5%, 55%,

77.5% and 100%. The folds are stratified using

StratifiedKFold16, this ensures that each fold gets at least one

sample from each class. Figure 11 confirms our previous

findings. The score against the training-dataset (red-line) is very

good (a sign of overfit) but the score against the testing-set is

bad (a sign that the classifier is unable to predict from this

dataset). Both scores remain stable as more training-samples are

used, a sign that the DT classifier is unable to generalize from

this dataset.

Figure 11

Results with the transformed dataset

In the previous section, a linear transformation was applied to

the dataset which made it more fit for an MLP classifier. It is

expected that the DT classifier performs better with this dataset

as well. A quick test was performed using this dataset. A hyper-

parameters grid-search was started against both the original and

the transformed dataset. The parameters found by the search for

the transformed data produced a classifier that reaches a 69%

F1 macro score, vs a 13% score obtained by the classifier that

was trained using the original data. This is an indication that the

transformation fulfills its purpose of being a better machine

representation of the data. It can be better classified by the

decision tree because the count of a given symbol now matters

more than the order on which the symbols appear to form a

hand. A split decision can be made on a single attribute that says

how many times a given card or suite appears in the sample, as

opposed to depending on the same value (card rank) to appear

in multiple attributes of the same sample. No further tests were

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

performed as it is outside the scope of this paper. Figure 12

shows the results obtained the DT classifier trained using the

transformed dataset.

Figure 12

General results

It is shown in this section that a DT is not an appropriate

classifier for this dataset. It struggles big time with the dominant

classes as a DT is forced to make decision splits that end up

miss-classifying entire sets of the non-dominant classes. When

trained with the transformed dataset, which is more machine-

learning friendly, a significant improvement in accuracy is

obtained. An increase from 13% to 69% is achieved by simply

feeding the same classifier with the transformed dataset.

7 SUPPORT VECTOR MACHINES

Notes and recommendations about SVMs

The following are some recommendations17 from Scikit-learn’s

documentation about working with their SVM implementation:

Scale the data as SVMs aren’t scale-invariant. In SVC with

imbalanced classes set class_weight=balanced and/or try

different C parameters. Search C and gamma for values spaced

exponentially far apart. For large datasets (tens of thousands)

consider using LinearSVC.

Linear vs non-linear quick test

Following the advice, considered using LinearSVC for large

datasets and compared it with RBF (not a linear kernel). Both

using the default settings for multi-class problems. As expected,

the linear kernel yielded awful results (7% F1 score) as the

function isn’t linearly separable. The RBF kernel with default

setting’s result was 35% F1 score.

Choosing the initial hyper-parameters and kernels

Two pre-set values of gamma are possible: auto and scale. The

scale value produces higher gamma values when the variance

of the training set is higher, and lower gamma otherwise. When

variance is 1.0, scale and auto is the same (see formula18), and

since the data is normalized (as per recommendation) for the

SVM, the default auto value will be used. Lower gamma causes

that single training samples have more influence, and vice

versa19. C is a tradeoff in between how many training examples

are correctly classified vs how relaxed the decision boundary is,

17 https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use

18 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

19 https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

e.g. a large C causes that more training examples are correctly

classified at the cost of risking overfit, since the decision

boundary is too close to the training boundary. The default

value is C is used (1.0). Two kernels are tested: RBF and

Polynomial. The class weighting method is being set to

‘balanced’ to account for class imbalance in the dataset. Both

kernels use one-vs-one scheme when the problem is multi-class.

Comparing RBF and Polynomial kernels

F1 score for the RBF and Polynomial kernels against the

training set. RBF performed better with 36% vs 16% F1 score.

Table 4 shows results exclusively for the RBF kernel.

Table 4

 precision recall f1-score support

 0 0.61 0.63 0.62 12493

 1 0.57 0.15 0.24 10599

 2 0.13 0.41 0.20 1206

 3 0.10 0.72 0.17 513

 4 0.10 1.00 0.18 93

 5 0.15 1.00 0.26 54

 6 0.11 1.00 0.19 36

 7 0.24 1.00 0.39 6

 8 0.56 1.00 0.71 5

 9 0.50 1.00 0.67 5

 accuracy 0.42 25010

 macro avg 0.30 0.79 0.36 25010

weighted avg 0.55 0.42 0.42 25010

The classification report in Table 4 shows that all classes are

called significantly. The classifiers aren’t biased to a particular

dominant-class, as has happened with other classifiers. Classes

4-9 actually have a perfect recall, which means that all samples

from those classes were classified correctly. The non-perfect

precision indicate that the other classes were incorrectly miss-

classified as one of these.

Figure 13

In Figure 13 it can be seen that the classes with fewest samples

(4-9) are all classified perfectly and the miss-classification

happens in the classes with more than 100 samples. The way

that SVM for multi-class works explains this. Basically,

individual classifiers are created for each class that is fit for its

https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

samples, where each classifier calculates its own decision

boundary function with those samples. It is not surprising that

the resulting function for the classes with fewest samples is less

complex and probably overfits more than the decision function

of the other classes where more samples allow for better

generalization. Keep in mind that this report was generated

using the training-set.

Model complexity analysis

According to Scikit’s documentation for C and gamma, “a

logarithmic grid from 1e-3 to 1e3 is usually sufficient”20. C and

gamma will be analyzed with values in the recommended range

[1e-3, 1e3]. Model complexity uses exclusively the training-set

which is split 80/20 to generate a validation set. The same split

is used for all tests of the hyper-parameters, so the results using

the different parameters are comparable.

Figure 14

The suspicious of overfitting is supported by the results shown

in Figure 14. The good performance on the training set is not

matched by the performance on the validation set. Gamma

controls how much “influence” each single sample has over the

final function. With gamma=0.1 the training score was the

lowest and the validation score was highest. For smaller values

of gamma, both the train and validation scores decrease, as an

indication that not enough “influence” from the vectors is being

used to model the actual function shape. The good training

scores for larger values of C are expected as larger C values

tend to better classify the training samples. C=100 is a good

tradeoff, with the highest validation score without 100%

accuracy on the training set, a common symptom of overfitting.

Learning curve for RBF kernel with class balancing

The best hyper parameters found with model analysis

correspond to C=100 and gamma=0.1. In addition, the class’s

weights are balanced, and the kernel chosen is RBF. Figure 15

shows the expected trend: validation score grows along with the

training size while the training score decreases to account for

better generalization. With the training-dataset which is already

a large one (25K samples), there was not enough time to see

how the graph converges. The Learning curve is not calculated

for the testing set, as its size (1M samples) makes it impractical.

20 https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Figure 15

Report against testing set

This is the only classifier for which running time has been

measured. Every other classifiers completed in less than 5

minutes (with less than a minute for most cases) when using

GPU support in Google Colab. The SVMs are known to be very

computationally involved, especially with a large space.

Training with 25K instances and testing against 1M instances

took 18 minutes to complete. The Classification Report is

shown in Table 5. Showing the classes with the lowest recall

scores.
Table 5

 precision recall f1-score support

 2 0.08 0.21 0.12 47622

 3 0.07 0.12 0.09 21121

 4 0.06 0.05 0.06 3885

 6 0.01 0.01 0.01 1424

 7 0.00 0.00 0.00 230

 8 0.00 0.00 0.00 12

 9 0.01 0.33 0.03 3

 macro avg 0.22 0.21 0.19 1000000

A terrible 19% F1 macro-avg was obtained, some classes

(including one with over 3K instances) with 0% recall.

Grid Search

A grid search was started for RBF kernel with varying gamma

and C values, and a Polynomial kernel with varying degree,

gamma and C. In both cases the best result came back with

C=1.0 and gamma = 0.1. The results were still under 20%

with many classes left un-classified. It appears that these

classes aren’t separable, at least under the linear, SVC and RBF

kernels.

General results

During training and doing cross-validation, the results showed

high levels of overfitting: 80% in most configurations and

100% F1-score in some of them. When using the testing-set, it

was found that the classes from this dataset are not linearly

separable In addition, non-linear kernels were used. Linear,

SVC and RBF kernels were analyzed. The best result obtained

was with the RBF kernel with just a 19% F1-macro accuracy.

This result confirms that the SVM overfits and is unable to

generalize for this particular dataset, due to the difficulty in
separating the classes using linear and non-linear kernels.

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

8 K-NEAREST NEIGHBORS (KNN)

Distance (a.k.a. similarity) metric function

Manhattan and Euclidean are the most common distance

metrics. Both are meant for real valued-vectors and therefore

the data has been scaled using the same method used for MLP

and SVM. Choosing the right function is critical for KNN and

therefore both functions are compared. The training set is

separated by class, each subset contains all samples of a class.

Then the Euclidean and Manhattan distance functions of the

pairs formed by the list and its inverse (e.g. first sample vs last,

second vs second-to-last) are calculated. The variance and

averages are compared in Table 6. Only some classes are

shown for convenience, but the other classes are alike.

Table 6

Average of Nothing Pair 2 Pair 3. Kind Flush
------------ --------- ------ -------- --------- -----
euclidean 4.39 4.39 4.4 4.32 4.56
manhattan 11.33 11.32 11.32 11.16 12.3

Variance of Nothing Pair 2 Pair 3. Kind Flush
------------- --------- ------ -------- --------- -----
euclidean 0.69 0.72 0.71 0.84 1.66
manhattan 7.03 7.24 7.42 8.55 22.97

At first, Euclidean appears as a better choice as it provides a

smaller variance which would in principle help cluster all

samples of same class together, making the cluster separation

easier. The problem is that the average value of all classes is too

similar. E.g. the average Euclidean distance between samples

from class “Nothing in hand” is 4.39, the same average is found

for samples from class “One pair”. For “Two pairs” the average

is 4.4, almost identical, similar result for “Three of a kind”. The

same goes for the variance. The variance in the distances from

the first two classes is 0.69 and 0.72. This is true for Euclidean

and Manhattan, and even for the scaled and not scaled samples.

One exception is class “Flush”, with a more significant average

value and higher variance. When comparing the cross-class (i.e.

compare samples from two different classes) variance for the

most-dominant classes (“Nothing in hand” and “One pair”), the

variance is almost the same as each class separately: 0.6986.

This should cause that the classifier faces difficulty when trying

to cluster samples from the same classes together, since the

Euclidean and Manhattan distance from arbitrary classes are too

similar from the distances of samples from the same class, i.e.

it will be difficult to create separate clusters for each class in the

dataset.

Algorithm

SciKit-learn provides three algorithms to perform KNN: Brute

Force, KD Tree and Ballpark. Each has their pros and cons,

e.g. Ballpark is very efficient in high dimensional spaces (>

20D), Brute Force is more efficient for datasets with few

samples (e.g. < 30) and KD Tree outperforms Brute Force

where the number of samples is larger but Ballpark is still

preferred if working on high-dimensional space. Lots of details

can be found in the official documentation.21 Brute Force is not

tested because it is designed for datasets with only a few

samples.

21 https://scikit-learn.org/stable/modules/neighbors.html#choice-of-nearest-neighbors-algorithm

Model complexity analysis

The weights can be distance or uniform. Intuitively it appears

that weights based on distance is more appropriate for the

imbalanced dataset, as there will be probably very few (if any)

neighbors together of the classes with less than 5 samples, and

the rest of the k-nearest neighbors (if choosing higher k) will

definitely be from a different class. The following varying

values are evaluated. Algorithms: Ball tree and KD tree.

Weights: uniform and distance (the closest neighbors have

more weight). K: 2 (smaller than min. # of samples per class),

5 (minimum number of classes) and 100 (arbitrary large). The

results are shown in Figure 16.

Figure 16

As expected, the weighted distance provided the best results.

The perfect score in the training set can be explained in terms

of the distance value of each training sample with itself, which

is the lowest (i.e. 0.0). Other samples aren’t close enough for

their weighted distance to overthrow it, not even when using

100 neighbors (k=100). Another possibility is that the distance

function is truly capturing the fact that samples of the same

class are clustered together, although this is unlikely due to the

problem mentioned in the previous analysis.

Results

Figure 17 shows the Confusion Matrix. The hyper-parameters

chosen for this result are 2 neighbors, Euclidean distance

metric, with distance weights and using the Ball-tree algorithm.

As expected, the classifier’s performance wasn’t good. Most

classes are miss-classified as one of the most-dominant classes,

but even the samples from the dominant classes get largely

miss-classified as some other class. This is due to the problem

explained earlier, where the distance metrics, either Euclidean

or Manhattan, aren’t able to create separate differentiable

clusters for each class. One exception is class 5 (“Flush”). As

mentioned earlier as well, this class is significantly different

from the other classes, and this allows the classifier to do a

much better job for its samples. The Classification Report is

shown in Table 7. The overall performance of the classifier is

pretty poor, achieving a 15% accuracy when using the original

data. A comparison with the results achieved when using the

transformed data is shown below.

https://scikit-learn.org/stable/modules/neighbors.html#choice-of-nearest-neighbors-algorithm

Figure 17

Comparing build vs query time

Figure 18 compares the build (blue) vs query (green) time taken

for each model. It appears that we’re not plotting the build time,

but what’s truly happening is that the build times are in the

milliseconds range while the query times, since it is querying

all of the instances of the training-set at once, are in the seconds

range. In average build time for all tests was in between 0.025

and 0.030 seconds. The larger build times of the ball tree are

expected due to the underlying trees’ structure: “This makes

tree construction more costly than that of the KD tree”22. For

all cases, query time is expected to grow as k increases, as the

tree needs to be traversed more to find the required neighbors.

Figure 18

Comparing the results of original data and transformation

Table 7 and Table 8 show the Classification Reports from the

original and transformed dataset, respectively. The F1-macro

scores are 15% for the original and 51% for the transformed

dataset. Notice that with the exception of class 5, every other

class seems to have been miss-classified as classes 0 or 1 in the

original dataset. Class 5 happens to be one of the classes that

has an acceptable number of samples (>1000) and the average

Euclidean distance metric result is over 0.20 above the averages

of class 0 and 1. The other classes, with the exception of class

4, either have a very low representation or are only at 0.10

above/below the averages of class 0 and 1 (4.40). The

classification report for the transformation is using the same

hyper-parameters. The variance report of the distance metrics

for the transformed data is seen in Table 9. The average

distances for the samples of the same class are clearly easier to

22 https://scikit-learn.org/stable/modules/neighbors.html#ball-tree

distinguish. This is a fundamental requirement for the KNN

algorithm, as it depends on being able to cluster together the

samples of the same class using one of the distance metrics.

Figure 19 shows the Classification Report. A clear

improvement is observed.
Table 7

 precision recall f1-score support

 0 0.55 0.55 0.55 501209

 1 0.45 0.45 0.45 422498

 2 0.08 0.08 0.08 47622

 3 0.06 0.06 0.06 21121

 4 0.03 0.03 0.03 3885

 5 0.29 0.27 0.28 1996

 6 0.01 0.01 0.01 1424

 7 0.00 0.00 0.00 230

 8 0.00 0.00 0.00 12

 9 0.01 0.33 0.02 3

 macro avg 0.15 0.18 0.15 1000000

Table 8

 precision recall f1-score support

 0 0.92 0.99 0.95 501209

 1 0.92 0.89 0.90 422498

 2 0.85 0.60 0.70 47622

 3 0.89 0.51 0.64 21121

 4 0.87 0.93 0.90 3885

 5 0.67 0.29 0.41 1996

 6 0.45 0.18 0.26 1424

 7 0.47 0.13 0.20 230

 8 0.01 0.08 0.03 12

 9 0.05 1.00 0.09 3

 macro avg 0.61 0.56 0.51 1000000

Table 9

Average of Nothing Pair 2 Pair 3. Kind

------------ --------- ------ -------- ---------

euclidean 5.16 6.13 6.96 7.62

manhattan 15.21 17.01 17.75 17.76

Figure 19

General results

When working with the original dataset, it has been found that

the distances (Euclidean or Manhattan) between two samples

from the same class, and two samples from arbitrary classes, are

nearly identical, i.e. they are all clustered around a Euclidean

average of 4.4 with +/-0.20 variance between them. This causes

that KNN isn’t able to find clearly distinguishable clusters for

each class, therefore random samples from all classes are miss-

https://scikit-learn.org/stable/modules/neighbors.html#ball-tree

classified as one other class. The one exception is the “Flush”

class, which does have a significantly different distance metric

and variance (for samples between its class compared to

samples from other classes). This is the only non-dominant

class that gets an F1-score of above 20%. All other non-

dominant classes are under 8%. Even the dominant classes get

largely miss-classified and barely achieve a 50% accuracy

score.

With the transformed dataset, the distance metric average and

variance between cross-class and in-class samples are

significantly easier to distinguish. The average values for in-

class average distance is shown in Table 9. The result is that

the dominant classes now get over 90% accuracy (vs 50% from

original data) and only 2 classes get less than 10% accuracy.

The result is a significant improvement, but nevertheless a very

poor 50% overall accuracy for the KNN classifier.

While it is possible to further massage the dataset or adjust the

hyper-parameters to achieve better accuracy, this is not further

pursued as the objective of comparing the performance

obtained with and without the transformed dataset has been

met.

9 CONCLUSIONS

I used the F1 macro-average score metric in this paper to

measure the performance of the classifiers. I showed that this

metric is appropriate for this dataset, given that it is imbalanced.

Other metrics can easily give the false impression of success if

the dominant classes are classified correctly, while the non-

dominant classes are not. For example, the classifier in [5] is

correctly classifying 100% of the 90% dominant samples; since

the metric used gives weight to the classes proportional to the

number of samples, the overall result is over 90% accuracy. In

this paper, I showed that when the metric is unweighted, the

true accuracy of the classifier is only 70%.

I have shown that the Poker-hand dataset is human-friendly but

not Machine Learning-friendly. All classifiers saw a significant

accuracy improvement after applying a simple linear

transformation to the dataset that made it more appropriate for

Machine Learning. For example, I showed that a simpler MLP

model provides equivalent results in less computational time if

using the transformed dataset. Specifically, I removed a layer

of 100 neurons without compromising the performance of the

classifier. The results show that the Neural Network accuracy

is similar or better than the one achieved by the more complex

model while reducing the training time by 25% to 50%.

REFERENCES

[1] R. Cattral and F. Oppacher, "Poker Hand Data Set,"

Carleton University, Department of Computer Science,

2007. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Poker+Hand.

[2] S. Boriah, C. Chandola and K. Chandola, "Similarity

Measures for Categorical Data: A Comparative

Evaluation," in Proceedings of the SIAM International

Conference on Data Mining, Atlanta, Georgia, USA, 2008.

[3] T. Mitchell, "McGraw Hill series in computer science," in

Machine Learning, New York, McGraw-Hill., 1997, p.

105.

[4] J. Heaton and J. Heaton, "The Number of Hidden Layers,"

Heaton Research, 2017. [Online]. Available:

https://www.heatonresearch.com/2017/06/01/hidden-

layers.html.

[5] Brownlee and J. Brownlee, "A Gentle Introduction to

Imbalanced Classification," Machine Learning Mastery,

2019. [Online]. Available:

https://machinelearningmastery.com/what-is-imbalanced-

classification/.

[6] Bhardwaj and A. Bhardwaj, "Poker-Hand Prediction,"

Medium.com, 2019. [Online]. Available:

https://medium.com/@virgoady7/poker-hand-prediction-

7a801e254acd.

	ABSTRACT
	1 INTRODUCTION
	Encoding
	Class Distribution

	3 HOW ARE THE RESULTS MEASURED
	4 TRAINING, VALIDATION AND TESTING SETS
	5 MULTI-LAYER PERCEPTRON NEURAL NETWORK
	Data pre-processing
	Initial hyper-parameters
	Model complexity analysis
	Model analysis and comparison with grid-search
	Data transformation for a simpler network topology
	Linear transformation
	Example transformation for the Royal Flush of Hearts
	Results with the transformed data
	General results

	6 DECISION TREES
	Pre-analysis of the dataset
	Initial hyper-parameters analysis
	Model complexity analysis
	Learning curve analysis
	Results with the transformed dataset
	General results

	7 SUPPORT VECTOR MACHINES
	Notes and recommendations about SVMs
	Linear vs non-linear quick test
	Choosing the initial hyper-parameters and kernels
	Comparing RBF and Polynomial kernels
	Model complexity analysis
	Learning curve for RBF kernel with class balancing
	Report against testing set
	Grid Search
	General results

	8 K-NEAREST NEIGHBORS (KNN)
	Distance (a.k.a. similarity) metric function
	Algorithm
	Model complexity analysis
	Results
	Comparing build vs query time
	Comparing the results of original data and transformation
	General results

	9 CONCLUSIONS
	REFERENCES

