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ABSTRACT 

The Poker Hand dataset [1] has two properties that makes it 

particular challenging for classification algorithms: it contains 

only categorical features (suite and rank of a card) and it’s 

extremely imbalanced (2 out of 10 classes constitute 90% of the 

samples). This makes it an interesting dataset for studying and 

evaluating various of the well-known Machine Learning (ML) 

classification algorithms. As part of Georgia Tech’s Machine 

Learning CS 76141 class, some of these algorithms are 

evaluated against this dataset. This paper describes the 

methodology used to create classifiers than can classify a 5-

cards poker hand entirely based in Machine Learning as 

opposed to classical rule-based programming. The results 

obtained for each of the following algorithms are discussed in 

detail: Multi-layer Perceptron Neural Network, Support Vector 

Machines, Decision Trees and K-Nearest Neighbors. 

Additionally, a simple linear transformation for the dataset is 

proposed, which significantly improves the performance of the 

classifiers. 

1 INTRODUCTION 

Machine Learning classifier algorithms struggle with 

categorical features because typical distance (a.k.a. similarity) 

metrics can’t be naturally calculated for such features. 

Categorial features need first to be encoded in a real-valued 

format before distance metrics can be even calculated, but even 

with real-valued numbers, typical metrics such as the Euclidean 

distance may not make sense for such features. E.g., if we have 

“card suite” encoded in real-valued numbers, what does the 

Euclidean distance of hearts to spades mean? This problem has 

been studied for a while. Several authors such as Boriah et.al. 

[2] have developed comparative models to evaluate the 

performance of some of the proposed methods. Another kind of 

challenging datasets for classification algorithms are those that 

are imbalanced, i.e. there is disproportionate ratio of samples of 

each class. “Imbalanced classifications pose a challenge for 

predictive modeling as most of the machine learning algorithms 

used for classification were designed around the assumption of 

an equal number of examples for each class”2. The Poker-hand 

dataset [1] has both properties: it’s extremely imbalanced and 

its features are categorical. A detailed description of the dataset 

is provided in the next section. This particular dataset is 

described by the authors as “challenging dataset for 

classification algorithms”3. 

 
1 https://www.cc.gatech.edu/~isbell/classes/2009/cs7641_spring/ 

2 https://machinelearningmastery.com/what-is-imbalanced-classification/ 

3 https://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand.names 

4 Model Complexity refers to the number of terms (variables) needed in a particular model 
5 https://numpy.org/ 

6 https://scikit-learn.org/ 

7 https://colab.research.google.com/ 

This paper is written for the Machine Learning class CS 7614, 

from the Master of Computer Science program at Georgia 

Tech’s Computing Systems School. The goal of the paper is not 

to solve the problems faced by the classifier algorithms when 

dealing with this kind of datasets, but to provide a 

comprehensive analysis of the results achieved with various 

popular classifiers, the methodology used to reach such results 

and the challenges faced along the way. 

The classifiers covered are: Multi-layer Perceptron Neural 

Network (MLP), Decision Trees (DT), K-Nearest Neighbors 

(KNN) and Support Vector Machines (SVM). For each 

classifier, I first show how is the data pre-processed and the 

methodology followed to pick the algorithm’s hyper-

parameters. Additional considerations on a per-algorithm basis 

are discussed along with a Model Complexity4 analysis. 

Finally, the results obtained are analyzed using various visual 

and tabular reports. The reader is assumed to be comfortable 

with the basic Machine Learning theory and to have a good 

understanding of the algorithms under study. The paper does 

not attempt to elaborate on these topics, instead, it focuses in 

the analysis of the obtained results from such algorithms. 

In addition, a novel linear transformation is proposed for the 

dataset. The transformation makes the dataset more suitable for 

processing by the different Machine Learning algorithms.  The 

results achieved by the classifiers when using both the 

transformed and original data are discussed in the paper. 

Python is used as the programming language, Numpy5 is used 

for data processing and Scikit-learn6 is the Machine Learning 

library of choice. Calculations are run in both a PC without 

GPU support, and in Google’s Colab7 with GPU support. 

 

2 DATASET DESCRIPTION 

The dataset is divided in training and testing sets. There are 1M 

and 25K samples in each set, respectively. This is a 11-

dimensional dataset: 10 attributes and 1 label (a.k.a. class or 

feature). All attributes are categorical. There are no missing 

values. Each sample represents a 5-cards poker-hand. Each card 

has two attributes (a.k.a. features): suite and rank. 

 

Encoding 

Suite:  1: Hearts, 2: Spades, 3: Diamonds, 4: Clubs 

Rank:  1: Ace, 2:2, ..., 10: Ten, 11: Jack, 12: Queen, 13: King 

Label: 0: Nothing, 1: Pair, 2: Two pairs, 3: Three of a kind, 4:  

Straight, 5: Flush, 6: Full house, 7: Four of a kind 8: Straight 

Flush 9: Royal Flush 

https://www.cc.gatech.edu/~isbell/classes/2009/cs7641_spring/
https://archive.ics.uci.edu/ml/machine-learning-databases/poker/poker-hand.names
https://numpy.org/
https://scikit-learn.org/
https://colab.research.google.com/


Class Distribution 

The dataset is very imbalanced. There are two dominant 

classes: 0 (Nothing in hand) and 1 (One pair). This distribution 

isn't random. It follows the actual distribution in the true game 

domain. The dominant classes account for over 90% of the 

samples. Table 1 shows the class distribution. 

 
Table 1 

0: Nothing in hand: 49.95202% 

1: One pair, 42.37905% 

2: Two pairs, 4.82207% 

3: Three of a kind, 2.05118% 

4: Straight, 0.37185% 

5: Flush, 54 instances, 0.21591% 

6: Full house, 36 instances, 0.14394% 

7: Four of a kind, 0.02399% 

8: Straight flush, 0.01999% 

9: Royal flush, 0.01999% 

 
Credit: https://archive.ics.uci.edu/ml/datasets/Poker+Hand 

3 HOW ARE THE RESULTS MEASURED 

Classification Reports8 are generally used in Machine 

Learning to measure the performance of classification 

algorithms. A Classification Report analyzes correct vs 

incorrect predictions and produces a series of metrics. From 

these metrics, the macro F1 score provides unweighted results 

per class, i.e. it does not take imbalance into account. “In 

problems where infrequent classes are nonetheless important, 

macro-averaging may be a means of highlighting their 

performance”9.  This prevents the good results obtained in 

dominant classes -alone- to be treated as a good result overall. 

E.g., for a classifier that correctly classifies 100% the 2 

dominant classes but incorrectly classifies 100% of the other 

classes, a weighted metric would find that 90% of the results 

were correct, given that the 2 dominant classes represent 90% 

of the data, but clearly an algorithm that miss-classifies 8 out of 

10 poker hands is a bad one In addition to the macro F1 score, 

a Confusion Matrix10 is used to visualize analyze the results of 

the classifiers. The results of this paper are discussed in function 

of both the macro F1-score and the Confusion Matrix. Where 

appropriate, classifier Training Time is also measured. 

4 TRAINING, VALIDATION AND TESTING SETS 

The classifiers don’t have access to the testing-set during 

learning. The testing-set is exclusively used for post-learning 

evaluation of a classifier. During learning, some algorithms 

require a validation dataset to tune hyper-parameters (e.g. for 

Cross-Validation) or as input to a model fitness function. The 

validation-set is also used for Model Complexity analysis. For 

this purpose, the training-set is split into training and 

validation (80/20). Before the split, the data is shuffled and 

 
8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html 

9 https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics 

10 https://en.wikipedia.org/wiki/Confusion_matrix 

11 http://deeplearning.net/tutorial/mlp.html 
12 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use 

13 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html 

14 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use 

stratified. Stratification is made as a function of the label, to 

make sure that both sets proportionally receive labels from all 

classes. 

5 MULTI-LAYER PERCEPTRON NEURAL NETWORK 

The first algorithm to evaluate is a as Multi-layer perceptron11 

(MLP). MLP is a type of feedforward Artificial Neural 

Networks (ANN). The choice of initial configuration and other 

hyper-parameters, as well as the results obtained after further 

tuning these values is described in this section. 

Data pre-processing 

Per SciKit-learn documentation, “Multi-layer Perceptron is 

sensitive to feature scaling, so it is highly recommended to scale 

your data”12. The data is scaled with Scikit-learn’s 

StandardScalar13 using the recommended range [0, 1]. 

Initial hyper-parameters 

Mitchell suggests [3] that a network of 3 layers (1 output and 2 

hidden layers) can be used to model any arbitrary function. And 

according to Heaton [4], a rule of thumb to choose the number 

of neurons per hidden-layer is to pick a value in that is “between 

the size of the input layer and the size of the output layer” [4]. 

The input layer for this dataset has 10 features and the output is 

the 10 possible classes (poker hands). Scikit-learn’s 

documentation mentions that “for relatively large 

datasets, Adam [solver] is very robust”14. Following these 

recommendations, a network of 2 hidden layers of 10 

neurons each is used with the Adam solver. ReLU as the 

activation function. The other hyper parameters are Scikit-

learn’s defaults. The classification report for these results are 

shown in Table 2. Most classes were not classified at all (as 

noticed in the 0.00 recall values). During training, the 200 max-

iterations limits was hit on every epoch, this means the 

algorithm wasn’t learning. The results are clearly disappointing. 

 
Table 2 

Classification Report for initial hyper-parameters 
                 precision    recall  f1-score   support 

 

        Nothing       0.61      0.77      0.68    501209 

           Pair       0.55      0.48      0.51    422498 

      Two pairs       0.00      0.00      0.00     47622 

Three of a kind       0.30      0.00      0.00     21121 

       Straight       0.00      0.00      0.00      3885 

          Flush       0.00      0.00      0.00      1996 

     Full house       0.00      0.00      0.00      1424 

 Four of a kind       0.00      0.00      0.00       230 

 Straight flush       0.00      0.00      0.00        12 

    Royal flush       0.00      0.00      0.00         3 

 

       accuracy                           0.59   1000000 

      macro avg       0.15      0.12      0.12   1000000 

   weighted avg       0.54      0.59      0.56   1000000 

 

Figure 1 compares the accuracy obtained for each class as a 

function of the number of samples of that class (a.k.a. “support” 

https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
https://en.wikipedia.org/wiki/Confusion_matrix
http://deeplearning.net/tutorial/mlp.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use


in the Classification Report). The graph shows that the classifier 

is biased towards the dominant classes. Only the most-dominant 

class is correctly classified better than chance.  

 

 

Figure 1 

The Confusion Matrix is shown in Figure 2. It shows that the 

least dominant-classes are completely miss-classified as one of 

the dominant-classes. The dominant classes are 0 and 1. It can 

be observed in the Confusion Matrix that all predictions 

(squares with color) ended up in either the 0 or 1 column. 

 

Figure 2 

Model complexity analysis 

The F1-score is analyzed after running the classifier with 

various settings of topology (number of hidden layers and 

neurons), alpha (regularization parameter) and learning rate. 

Varying the topology can show how a more or less complex 

network can better represent the function, and alpha helps 

“avoiding overfitting by penalizing weights with large 

magnitudes”15. The analysis is done exclusively against the 

training data, which is split 80/20 as train-validation. The values 

analyzed for topology are one layer with 100 neurons, 2 layers 

with 10 neurons, 2 layers with 100 neurons and 3 layers with 

100 neurons. The values analyzed for alpha is in the range 

recommended in Scikit-learn’s documentation [1e-1, 1e-6]. A 

properly tuned learning rate can help the model converge. The 

results are shown in Figure 3. The results suggest that tuning 

hyper-parameters in isolation is not going to help, e.g. 

arbitrarily choosing network topologies without proper tuning 

of other parameters isn’t improving the results. The two most 

complex networks resulted in the highest level of overfit. 

Overfit is observed when the results over the training-set (blue) 

 
15 https://scikit-learn.org/stable/modules/neural_networks_supervised.html#regularization 

are much better than their testing-set (green) counterpart. The 

third most complex (10, 10) was largely defeated by the 

simplest one (100).  The results also suggest that for small 

values of alpha, the score remains stable, but these parameters 

should be validated in conjunction with other hyper-parameters. 

 

 

Figure 3 

Model analysis and comparison with grid-search 

Manually choosing the params from the previous section that 

provided the best results, did not significantly improve the 

performance. E.g. with 2-layer topology (100, 100), alpha = 

1e-4 and learning rate = 1e-3, resulted in a 25% F1 score (vs 

12% from previous exercise). In an effort to study how the 

results change when multiple hyper-parameters are tested in 

conjunction, a grid search was started with a wider range of 

values including tolerance and maximum iterations. The grid 

came back with the following hyper-parameters and an 

impressive 80% F1 score: 3 hidden layers of 100 neurons each, 

alpha=0.0001 and learning rate=0.01 with 100 max-iterations. 

The result of this experiment was reproduced multiple times to 

validate its consistency. The Confusion Matrix is shown in 

Figure 4. 

 
Figure 4 

This more complex network when tuned along other parameters 

provided a remarkable increase in performance. In this 

particular example, class 9 was completely miss-classified. The 

reason is that class 9 (royal flush) has only 5 training samples 

out of 25K total in the dataset, and the generalization that the 

algorithm could achieve is not enough to correctly classify that 

label. Notice that, while proportionally speaking, the vast 



majority of samples were classified correctly (there is over a 

million samples in the testing set), and only a few, from the non-

dominant classes were miss-classified, yet the macro F1-score 

is still reporting only 80% success. This confirms that the F1-

score is an appropriate metric for this dataset. 

Data transformation for a simpler network topology 

The results obtained in the previous section aren’t great. 

Theoretically these results can be improved as a neural network 

is capable of modeling any arbitrary function, but this might 

require a more complex model. This section proposes a linear 

transformation to the dataset that provides better results even 

for the simpler topologies that previously resulted in bad 

predictions. The transformation is based in the fact that the 

order in which the cards appear (in a hand) doesn’t matter (to 

classify the hand), and that a more important attribute for 

classifying a hand is the number of cards (i.e. cardinality) with 

the same rank or suite that appear in the hand. The original 

dataset model gives an artificial importance to the order in 

which the cards appear (samples are ordered lists of 5 cards) 

and it does not explicitly encode the cardinality of each suite or 

rank. The premise is that by making this attribute explicitly 

available in the data, a Neural Network is able to better classify 

the dataset, in comparison to the same Neural Network when 

using the original model in which the attribute is hidden. To 

validate this premise, the neural-network model that provided 

bad results when using the original dataset is trained again with 

the new dataset. The results are discussed in this section. 

Linear transformation 

The following is a linear transformation from the original 11D 

space to a new 18D space. A linear transformation is preferable 

due to its reduced computational requirements. The new 

dimensions and descriptions are: 

Attributes 1 through 13: The 13 ranks, i.e. 1: Ace, 2: Two, 3: 

Three, …, 10: Ten, 11: Jack, 12: Queen, 13: King. 

Attributes 14 through 17:  The 4 suites, i.e. 14: Hearts, 15: 

Spades, 16: Diamonds, 17: Clubs  

Domain: [0-5]. Each dimension represents the rank or suite 

cardinality in the hand. 

Last dimension: Poker hand [0-9] (unchanged). 

Example transformation for the Royal Flush of Hearts 

Representation in original dimensions (11D) 

Data: 1,1,1,10,1,11,1,12,1,13,9 

Encodes: Hearts-Ace, Hearts-Ten, Hearts-Jack, Hearts-Queen, 

Hearts-King, Royal-Flush 

Representation in new dimensions (18D) 

Data: 1,0,0,0,0,0,0,0,0,1,1,1,1,5,0,0,0,9 

Encodes: 1st column = 1 ace, 10th through 13th columns = 

10, Jack, Queen and King, 14th column = 5 cards are hearts, 

and 18th column a Royal Flush. 

Figure 5 shows a visual representation of the transformation for 

the Royal Flush of Hearts. 

 
Figure 5 

The new model represents any given a combination of 5 cards 

the same way regardless of order and explicitly exposes 

information useful for Poker hands such as the cardinality of 

each rank and suite. 

Results with the transformed data 

A new grid search was started but limiting the topology to the 

two that previously provided very poor results (under 15% 

macro-avg F1 score). The result was that a network of a single 

layer with 100 neurons resulted in 72% macro-avg F1 score, 

i.e., a simple data transformation allowed for a significant 

performance increase using a less complex neural network. 

Figure 5 shows the Confusion Matrix. Notice that even the least 

dominant class (class 9) was correctly classified 100% of the 

time.  

 

Figure 6 

A 2-layer (100 neurons each) MLP results in ~86 accuracy 

(macro-avg F1 score). Figure 7 shows the Confusion Matrix. 

 

Figure 7 



The result shown in Figure 7 using 2-layers is equivalent or 

better than the result achieved a 3-layers MLP with the original 

data (refer to previous section). In terms of training-time, the 

transformed dataset completes training in only 13 seconds 

while it takes 20+ seconds for the original data, an improvement 

of ~40% in training-time. 

This is an example of a method in which, a highly imbalanced 

and purely categorical dataset can be still successfully 

processed by a classification algorithm. This method is of my 

own invention and applicable only to this dataset. As opposed 

to using a similarity metric that is applicable to categorial 

features, this method transforms the data in a way that it 

becomes non-categorical. More general approaches and 

similarity metrics are studied in [2]. 

General results 

An MLP neural network with 3 hidden layers of 100 neurons 

each, alpha=0.0001 and a learning rate=0.01, achieved a ~80% 

F1-macro average score. This is a remarkable improvement 

over the initial hyper-parameters that before proper tuning 

yielded a 12% score. The testing set has over 1M samples of 

which over 95% were classified correctly but given that the 

metric in use (macro F1-score) does not give more weight to the 

dominant classes, the overall score is significantly lower. This 

proves that the F1 macro-average metric is appropriate for this 

dataset. 

 

In addition, it was observed that the original dataset model is 

not the most appropriate for the classification task at hand. In 

order to learn the underlying classification function, the neural 

network needs to learn some hidden attributes. A linear 

transformation over the dataset is proposed, which makes some 
of these attributes explicitly available in the data. The end result 

is a simpler model to learn and hence, a simpler neural network 

is able to achieve comparable results to the more complex 

network that uses the original dataset. 

6 DECISION TREES 

Pre-analysis of the dataset 

In order to classify a Poker hand, a player needs all 5 cards 

revealed. A single one card can totally re-classify a hand. E.g. 

the first 4 cards can be classified as class nothing, but the fifth 

card can make the hand become a flush, pair, straight and 

others. This is a particular hard problem for a Decision Tree 

(DT). There will be splits that miss-classifies a whole bunch of 

hands. A probabilistic result seems to be more appropriate, e.g. 

having 3 given cards reduces the domain of possible hand. On 

decision-splits, I expect that the dominant classes will be 

chosen more often simply because they get more votes. 

 

Initial hyper-parameters analysis 

SciKit’s DecisionTreeClassifier is used. The most interesting 

default settings (in parenthesis) are: max_depth (no-limit), 

min_samples_split (2), min_samples_leaf (1), class_weight 

(uniform) and the split method (Gini). The DT is expected to 

overfit if the max_depth is set to no-limit. On one hand, the DT 

to should be able to generalize (e.g. smaller max_depth), but in 

the other hand it must be able to go deep-enough to classify the 

5-cards correctly. Given the number of samples for some of the 

non-dominant classes (have 6 or fewer instances), the 

min_samples_leaf and min_samples_split  can’t be too strict, 

otherwise there is no hope for the DT to learn those classes (e.g. 

min_sample_leaf to be smaller than samples exist). The 

class_weight should be set to take in account the imbalance 

nature of this dataset. Otherwise, the non-dominant classes 

won’t have a chance. A DT is definitely not a good classifier 

for this particular dataset. The experiments below confirm this. 

 

The following are the initial parameters chosen for this 

classifier: max_depth: 10 (same as used the number of 

attributes), class_weight balanced (class imbalance in dataset), 

min_samples_leaf and min_samples_split: 3 (less than the 

minimum number of samples for the least represented class). 

 

Performance of initial parameters vs default settings 

When the tree is trained using the default parameters and tested 

against the training-set, it obtains a perfect F1-score (1.0). This 

is due to overfitting. When tested against the testing-set, the 

performance is dramatically decreased. Figure 8 and Figure 9 

are the Confusion Matrices of the default and initial parameters, 

respectively, against the testing-set. 

 
Figure 8 

Figure 8 shows the results using the default settings. It is 

observed that the poker-hands are often miss-classified as one 

of the dominant classes (0 & 1) as indicated by the strong color 

in those columns. This is expected given that no class-balancing 

is configured in this test. 

 

 
Figure 9 



Figure 9 shows that the tree isn’t longer biased towards the 

dominant classes when using the initial parameters. In Table 3 

it can be seen that recall percentage is spread across multiple 

classes. 
Table 3 

             precision    recall  f1-score   support 

           0       0.60      0.28      0.39    501209 

           1       0.50      0.08      0.15    422498 

           2       0.08      0.14      0.10     47622 

           3       0.03      0.26      0.06     21121 

           4       0.01      0.29      0.01      3885 

           5       0.01      0.55      0.02      1996 

           6       0.00      0.13      0.00      1424 

           7       0.00      0.01      0.00       230 

           8       0.00      0.17      0.00        12 

           9       0.00      0.00      0.00         3 

    accuracy                           0.19   1000000 

   macro avg       0.12      0.19      0.07   1000000 

weighted avg       0.52      0.19      0.26   1000000 

 

Model complexity analysis 

For the min_samples_leaf and min_samples_split, besides the 

default values, a choice of 4 and 10 are made. These 

corresponds to a number lower than the number of training 

samples for the least represented class (5 samples) and a higher 

one (10). For the max_depth, the default value is used (no-

limit) as well as a value that is lower and exactly the number of 

attributes (5 and 10) and an arbitrary larger number (25). For 

comparison, results for the default and the initially proposed 

settings are also shown. 

 

 
Figure 10 

Figure 10 shows the F1-macro score for train vs validation sets 

for the different models. As expected, the validation set score is 

not good, since it is not expected that a decision tree classifier 

can generalize well on this dataset. For the 3 cases of the default 

values, the score against the training set is 100% (overfitting). 

No performance increase is observed in neither configuration. 

The validation set score decreases as the default settings are 

changed. This indicates that the tree is unable to generalize for 

the classes with fewest samples, and as the tree is less overfit it 

can’t longer classify correctly the dominant classes either. 

These account for the 90% of samples, hence reducing the 

overall score. The last row (best) was added after seeing the 

results from all previous settings 

 

 
16 http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html 

Learning curve analysis 

The learning curve analysis permits to observe how (and if) the 

classifier improves its score, as more training samples are used 

for learning. A good classifier would show that the cross-

validation score improves along with the training size as the 

classifier is able to generalize better. The choice of parameters 

for the test is hard, as there is no direct evidence of a better 

result from the previous section. The default settings do have 

the best result in terms of training and test validation, but they 

also have a perfect F1 score against the training-set, which is an 

indicator overfitting. For this reason, min_split=4 and 

max_depth=25 (prevents overfitting) was chosen. The 

training-set is split in 5 different subsets (train and validation 

sets for cross-validation) with sizes of 10%, 32.5%, 55%, 

77.5% and 100%. The folds are stratified using 

StratifiedKFold16, this ensures that each fold gets at least one 

sample from each class. Figure 11 confirms our previous 

findings. The score against the training-dataset (red-line) is very 

good (a sign of overfit) but the score against the testing-set is 

bad (a sign that the classifier is unable to predict from this 

dataset). Both scores remain stable as more training-samples are 

used, a sign that the DT classifier is unable to generalize from 

this dataset. 

 

 
Figure 11 

Results with the transformed dataset 

In the previous section, a linear transformation was applied to 

the dataset which made it more fit for an MLP classifier. It is 

expected that the DT classifier performs better with this dataset 

as well. A quick test was performed using this dataset. A hyper-

parameters grid-search was started against both the original and 

the transformed dataset. The parameters found by the search for 

the transformed data produced a classifier that reaches a 69% 

F1 macro score, vs a 13% score obtained by the classifier that 

was trained using the original data. This is an indication that the 

transformation fulfills its purpose of being a better machine 

representation of the data. It can be better classified by the 

decision tree because the count of a given symbol now matters 

more than the order on which the symbols appear to form a 

hand. A split decision can be made on a single attribute that says 

how many times a given card or suite appears in the sample, as 

opposed to depending on the same value (card rank) to appear 

in multiple attributes of the same sample. No further tests were 

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html


performed as it is outside the scope of this paper. Figure 12 

shows the results obtained the DT classifier trained using the 

transformed dataset. 

 

 
Figure 12 

General results 

It is shown in this section that a DT is not an appropriate 

classifier for this dataset. It struggles big time with the dominant 

classes as a DT is forced to make decision splits that end up 

miss-classifying entire sets of the non-dominant classes. When 

trained with the transformed dataset, which is more machine-

learning friendly, a significant improvement in accuracy is 

obtained. An increase from 13% to 69% is achieved by simply 

feeding the same classifier with the transformed dataset. 

7 SUPPORT VECTOR MACHINES 

Notes and recommendations about SVMs 

The following are some recommendations17 from Scikit-learn’s 

documentation about working with their SVM implementation: 

Scale the data as SVMs aren’t scale-invariant. In SVC with 

imbalanced classes set class_weight=balanced and/or try 

different C parameters. Search C and gamma for values spaced 

exponentially far apart. For large datasets (tens of thousands) 

consider using LinearSVC. 

 

Linear vs non-linear quick test 

Following the advice, considered using LinearSVC for large 

datasets and compared it with RBF (not a linear kernel). Both 

using the default settings for multi-class problems. As expected, 

the linear kernel yielded awful results (7% F1 score) as the 

function isn’t linearly separable. The RBF kernel with default 

setting’s result was 35% F1 score.  

 

Choosing the initial hyper-parameters and kernels 

Two pre-set values of gamma are possible: auto and scale. The 

scale value produces higher gamma values when the variance 

of the training set is higher, and lower gamma otherwise. When 

variance is 1.0, scale and auto is the same (see formula18), and 

since the data is normalized (as per recommendation) for the 

SVM, the default auto value will be used. Lower gamma causes 

that single training samples have more influence, and vice 

versa19.  C is a tradeoff in between how many training examples 

are correctly classified vs how relaxed the decision boundary is, 

 
17 https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use 

18 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC 

19 https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html 

e.g. a large C causes that more training examples are correctly 

classified at the cost of risking overfit, since the decision 

boundary is too close to the training boundary. The default 

value is C is used (1.0). Two kernels are tested: RBF and 

Polynomial. The class weighting method is being set to 

‘balanced’ to account for class imbalance in the dataset. Both 

kernels use one-vs-one scheme when the problem is multi-class. 

 

Comparing RBF and Polynomial kernels 

F1 score for the RBF and Polynomial kernels against the 

training set. RBF performed better with 36% vs 16% F1 score.  

 

Table 4 shows results exclusively for the RBF kernel. 

 
Table 4 

              precision    recall  f1-score   support 

           0       0.61      0.63      0.62     12493 

           1       0.57      0.15      0.24     10599 

           2       0.13      0.41      0.20      1206 

           3       0.10      0.72      0.17       513 

           4       0.10      1.00      0.18        93 

           5       0.15      1.00      0.26        54 

           6       0.11      1.00      0.19        36 

           7       0.24      1.00      0.39         6 

           8       0.56      1.00      0.71         5 

           9       0.50      1.00      0.67         5 

 

    accuracy                           0.42     25010 

   macro avg       0.30      0.79      0.36     25010 

weighted avg       0.55      0.42      0.42     25010 

 

The classification report in Table 4 shows that all classes are 

called significantly. The classifiers aren’t biased to a particular 

dominant-class, as has happened with other classifiers. Classes 

4-9 actually have a perfect recall, which means that all samples 

from those classes were classified correctly. The non-perfect 

precision indicate that the other classes were incorrectly miss-

classified as one of these.  

 
Figure 13 

In Figure 13 it can be seen that the classes with fewest samples 

(4-9) are all classified perfectly and the miss-classification 

happens in the classes with more than 100 samples. The way 

that SVM for multi-class works explains this. Basically, 

individual classifiers are created for each class that is fit for its 

https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


samples, where each classifier calculates its own decision 

boundary function with those samples. It is not surprising that 

the resulting function for the classes with fewest samples is less 

complex and probably overfits more than the decision function 

of the other classes where more samples allow for better 

generalization. Keep in mind that this report was generated 

using the training-set. 

Model complexity analysis 

According to Scikit’s documentation for C and gamma, “a 

logarithmic grid from 1e-3 to 1e3 is usually sufficient”20. C and 

gamma will be analyzed with values in the recommended range 

[1e-3, 1e3]. Model complexity uses exclusively the training-set 

which is split 80/20 to generate a validation set. The same split 

is used for all tests of the hyper-parameters, so the results using 

the different parameters are comparable. 

 
Figure 14 

The suspicious of overfitting is supported by the results shown 

in Figure 14. The good performance on the training set is not 

matched by the performance on the validation set. Gamma 

controls how much “influence” each single sample has over the 

final function. With gamma=0.1 the training score was the 

lowest and the validation score was highest. For smaller values 

of gamma, both the train and validation scores decrease, as an 

indication that not enough “influence” from the vectors is being 

used to model the actual function shape. The good training 

scores for larger values of C are expected as larger C values 

tend to better classify the training samples. C=100 is a good 

tradeoff, with the highest validation score without 100% 

accuracy on the training set, a common symptom of overfitting. 

 

Learning curve for RBF kernel with class balancing 

The best hyper parameters found with model analysis 

correspond to C=100 and gamma=0.1. In addition, the class’s 

weights are balanced, and the kernel chosen is RBF. Figure 15 

shows the expected trend: validation score grows along with the 

training size while the training score decreases to account for 

better generalization. With the training-dataset which is already 

a large one (25K samples), there was not enough time to see 

how the graph converges.  The Learning curve is not calculated 

for the testing set, as its size (1M samples) makes it impractical. 

 

 
20 https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html 

 

Figure 15 

Report against testing set 

This is the only classifier for which running time has been 

measured. Every other classifiers completed in less than 5 

minutes (with less than a minute for most cases) when using 

GPU support in Google Colab. The SVMs are known to be very 

computationally involved, especially with a large space. 

Training with 25K instances and testing against 1M instances 

took 18 minutes to complete. The Classification Report is 

shown in Table 5. Showing the classes with the lowest recall 

scores. 
Table 5 

              precision    recall  f1-score   support 

           2       0.08      0.21      0.12     47622 

           3       0.07      0.12      0.09     21121 

           4       0.06      0.05      0.06      3885 

           6       0.01      0.01      0.01      1424 

           7       0.00      0.00      0.00       230 

           8       0.00      0.00      0.00        12 

           9       0.01      0.33      0.03         3 

   macro avg       0.22      0.21      0.19   1000000 

 

A terrible 19% F1 macro-avg was obtained, some classes 

(including one with over 3K instances) with 0% recall. 

 

Grid Search 

A grid search was started for RBF kernel with varying gamma 

and C values, and a Polynomial kernel with varying degree, 

gamma and C. In both cases the best result came back with 

C=1.0 and gamma = 0.1. The results were still under 20% 

with many classes left un-classified. It appears that these 

classes aren’t separable, at least under the linear, SVC and RBF 

kernels. 

General results 

During training and doing cross-validation, the results showed 

high levels of overfitting: 80% in most configurations and 

100% F1-score in some of them. When using the testing-set, it 

was found that the classes from this dataset are not linearly 

separable In addition, non-linear kernels were used. Linear, 

SVC and RBF kernels were analyzed. The best result obtained 

was with the RBF kernel with just a 19% F1-macro accuracy. 

This  result confirms that the SVM overfits and is unable to 

generalize for this particular dataset, due to the difficulty in 
separating the classes using linear and non-linear kernels. 

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


8 K-NEAREST NEIGHBORS (KNN) 

Distance (a.k.a. similarity) metric function 

Manhattan and Euclidean are the most common distance 

metrics. Both are meant for real valued-vectors and therefore 

the data has been scaled using the same method used for MLP 

and SVM. Choosing the right function is critical for KNN and 

therefore both functions are compared. The training set is 

separated by class, each subset contains all samples of a class. 

Then the Euclidean and Manhattan distance functions of the 

pairs formed by the list and its inverse (e.g. first sample vs last, 

second vs second-to-last) are calculated. The variance and 

averages are compared in Table 6. Only some classes are 

shown for convenience, but the other classes are alike. 

Table 6 

Average of       Nothing    Pair    2 Pair    3. Kind       Flush 
------------   ---------  ------  --------  ---------   ----- 
euclidean           4.39    4.39      4.4        4.32        4.56 
manhattan          11.33   11.32     11.32      11.16        12.3 
  
Variance of      Nothing    Pair    2 Pair    3. Kind       Flush 
-------------  ---------  ------  --------  ---------   ----- 
euclidean           0.69    0.72      0.71       0.84        1.66 
manhattan           7.03    7.24      7.42       8.55       22.97 

 

At first, Euclidean appears as a better choice as it provides a 

smaller variance which would in principle help cluster all 

samples of same class together, making the cluster separation 

easier. The problem is that the average value of all classes is too 

similar. E.g. the average Euclidean distance between samples 

from class “Nothing in hand” is 4.39, the same average is found 

for samples from class “One pair”. For “Two pairs” the average 

is 4.4, almost identical, similar result for “Three of a kind”. The 

same goes for the variance. The variance in the distances from 

the first two classes is 0.69 and 0.72. This is true for Euclidean 

and Manhattan, and even for the scaled and not scaled samples. 

One exception is class “Flush”, with a more significant average 

value and higher variance. When comparing the cross-class (i.e. 

compare samples from two different classes) variance for the 

most-dominant classes (“Nothing in hand” and “One pair”), the 

variance is almost the same as each class separately: 0.6986. 

This should cause that the classifier faces difficulty when trying 

to cluster samples from the same classes together, since the 

Euclidean and Manhattan distance from arbitrary classes are too 

similar from the distances of samples from the same class, i.e. 

it will be difficult to create separate clusters for each class in the 

dataset. 

 

Algorithm 

SciKit-learn provides three algorithms to perform KNN: Brute 

Force, KD Tree and Ballpark. Each has their pros and cons, 

e.g. Ballpark is very efficient in high dimensional spaces (> 

20D), Brute Force is more efficient for datasets with few 

samples (e.g. < 30) and KD Tree outperforms Brute Force 

where the number of samples is larger but Ballpark is still 

preferred if working on high-dimensional space. Lots of details 

can be found in the official documentation.21 Brute Force is not 

tested because it is designed for datasets with only a few 

samples. 

 
21 https://scikit-learn.org/stable/modules/neighbors.html#choice-of-nearest-neighbors-algorithm 

Model complexity analysis 

The weights can be distance or uniform. Intuitively it appears 

that weights based on distance is more appropriate for the 

imbalanced dataset, as there will be probably very few (if any) 

neighbors together of the classes with less than 5 samples, and 

the rest of the k-nearest neighbors (if choosing higher k) will 

definitely be from a different class.  The following varying 

values are evaluated. Algorithms: Ball tree and KD tree. 

Weights: uniform and distance (the closest neighbors have 

more weight). K: 2 (smaller than min. # of samples per class), 

5 (minimum number of classes) and 100 (arbitrary large). The 

results are shown in Figure 16. 

 

Figure 16 

As expected, the weighted distance provided the best results. 

The perfect score in the training set can be explained in terms 

of the distance value of each training sample with itself, which 

is the lowest (i.e. 0.0). Other samples aren’t close enough for 

their weighted distance to overthrow it, not even when using 

100 neighbors (k=100). Another possibility is that the distance 

function is truly capturing the fact that samples of the same 

class are clustered together, although this is unlikely due to the 

problem mentioned in the previous analysis. 

 

Results 

Figure 17 shows the Confusion Matrix. The hyper-parameters 

chosen for this result are 2 neighbors, Euclidean distance 

metric, with distance weights and using the Ball-tree algorithm. 

As expected, the classifier’s performance wasn’t good. Most 

classes are miss-classified as one of the most-dominant classes, 

but even the samples from the dominant classes get largely 

miss-classified as some other class. This is due to the problem 

explained earlier, where the distance metrics, either Euclidean 

or Manhattan, aren’t able to create separate differentiable 

clusters for each class. One exception is class 5 (“Flush”). As 

mentioned earlier as well, this class is significantly different 

from the other classes, and this allows the classifier to do a 

much better job for its samples. The Classification Report is 

shown in Table 7. The overall performance of the classifier is 

pretty poor, achieving a 15% accuracy when using the original 

data. A comparison with the results achieved when using the 

transformed data is shown below.  

https://scikit-learn.org/stable/modules/neighbors.html#choice-of-nearest-neighbors-algorithm


 

Figure 17 

Comparing build vs query time 

Figure 18 compares the build (blue) vs query (green) time taken 

for each model. It appears that we’re not plotting the build time, 

but what’s truly happening is that the build times are in the 

milliseconds range while the query times, since it is querying 

all of the instances of the training-set at once, are in the seconds 

range. In average build time for all tests was in between 0.025 

and 0.030 seconds. The larger build times of the ball tree are 

expected due to the underlying trees’ structure: “This makes 

tree construction more costly than that of the KD tree”22. For 

all cases, query time is expected to grow as k increases, as the 

tree needs to be traversed more to find the required neighbors. 

 

 
Figure 18 

Comparing the results of original data and transformation 

Table 7 and Table 8 show the Classification Reports from the 

original and transformed dataset, respectively. The F1-macro 

scores are 15% for the original and 51% for the transformed 

dataset. Notice that with the exception of class 5, every other 

class seems to have been miss-classified as classes 0 or 1 in the 

original dataset. Class 5 happens to be one of the classes that 

has an acceptable number of samples (>1000) and the average 

Euclidean distance metric result is over 0.20 above the averages 

of class 0 and 1. The other classes, with the exception of class 

4, either have a very low representation or are only at 0.10 

above/below the averages of class 0 and 1 (4.40). The 

classification report for the transformation is using the same 

hyper-parameters. The variance report of the distance metrics 

for the transformed data is seen in Table 9. The average 

distances for the samples of the same class are clearly easier to 

 
22 https://scikit-learn.org/stable/modules/neighbors.html#ball-tree 

distinguish. This is a fundamental requirement for the KNN 

algorithm, as it depends on being able to cluster together the 

samples of the same class using one of the distance metrics. 

Figure 19 shows the Classification Report. A clear 

improvement is observed. 
Table 7 

              precision    recall  f1-score   support 

           0       0.55      0.55      0.55    501209 

           1       0.45      0.45      0.45    422498 

           2       0.08      0.08      0.08     47622 

           3       0.06      0.06      0.06     21121 

           4       0.03      0.03      0.03      3885 

           5       0.29      0.27      0.28      1996 

           6       0.01      0.01      0.01      1424 

           7       0.00      0.00      0.00       230 

           8       0.00      0.00      0.00        12 

           9       0.01      0.33      0.02         3 

   macro avg       0.15      0.18      0.15   1000000 

 
Table 8 

              precision    recall  f1-score   support 

           0       0.92      0.99      0.95    501209 

           1       0.92      0.89      0.90    422498 

           2       0.85      0.60      0.70     47622 

           3       0.89      0.51      0.64     21121 

           4       0.87      0.93      0.90      3885 

           5       0.67      0.29      0.41      1996 

           6       0.45      0.18      0.26      1424 

           7       0.47      0.13      0.20       230 

           8       0.01      0.08      0.03        12 

           9       0.05      1.00      0.09         3 

   macro avg       0.61      0.56      0.51   1000000 

 
Table 9 

Average of      Nothing    Pair    2 Pair    3. Kind 

------------  ---------  ------  --------  --------- 

euclidean          5.16    6.13      6.96       7.62 

manhattan         15.21   17.01     17.75      17.76 

 

 

 
Figure 19 

General results 

When working with the original dataset, it has been found that 

the distances (Euclidean or Manhattan) between two samples 

from the same class, and two samples from arbitrary classes, are 

nearly identical, i.e. they are all clustered around a Euclidean 

average of 4.4 with +/-0.20 variance between them. This causes 

that KNN isn’t able to find clearly distinguishable clusters for 

each class, therefore random samples from all classes are miss-

https://scikit-learn.org/stable/modules/neighbors.html#ball-tree


classified as one other class. The one exception is the “Flush” 

class, which does have a significantly different distance metric 

and variance (for samples between its class compared to 

samples from other classes). This is the only non-dominant 

class that gets an F1-score of above 20%. All other non-

dominant classes are under 8%. Even the dominant classes get 

largely miss-classified and barely achieve a 50% accuracy 

score.  

 

With the transformed dataset, the distance metric average and 

variance between cross-class and in-class samples are 

significantly easier to distinguish. The average values for in-

class average distance is shown in Table 9. The result is that 

the dominant classes now get over 90% accuracy (vs 50% from 

original data) and only 2 classes get less than 10% accuracy. 

The result is a significant improvement, but nevertheless a very 

poor 50% overall accuracy for the KNN classifier. 

 

While it is possible to further massage the dataset or adjust the 

hyper-parameters to achieve better accuracy, this is not further 

pursued as the objective of comparing the performance 

obtained with and without the transformed dataset has been 

met. 

9 CONCLUSIONS 

I used the F1 macro-average score metric in this paper to 

measure the performance of the classifiers. I showed that this 

metric is appropriate for this dataset, given that it is imbalanced. 

Other metrics can easily give the false impression of success if 

the dominant classes are classified correctly, while the non-

dominant classes are not. For example, the classifier in [5] is 

correctly classifying 100% of the 90% dominant samples; since 

the metric used gives weight to the classes proportional to the 

number of samples, the overall result is over 90% accuracy. In 

this paper, I showed that when the metric is unweighted, the 

true accuracy of the classifier is only 70%. 

I have shown that the Poker-hand dataset is human-friendly but 

not Machine Learning-friendly. All classifiers saw a significant 

accuracy improvement after applying a simple linear 

transformation to the dataset that made it more appropriate for 

Machine Learning. For example, I showed that a simpler MLP 

model provides equivalent results in less computational time if 

using the transformed dataset. Specifically, I removed a layer 

of 100 neurons without compromising the performance of the 

classifier. The results show that the Neural Network accuracy 

is similar or better than the one achieved by the more complex 

model while reducing the training time by 25% to 50%. 
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